Train the Trainer Folder

Advanced Hemodynamic Monitoring

PiCCO-Technology®

Theory and Practice
Table of contents

1. Background hemodynamics
 page 1-1

2. PiCCO® technology & parameters
 page 2-1

3. PiCCO® setup & disposables
 page 3-1

4. Tips & tricks
 page 4-1

5. Case studies
 page 5-1

6. Literature
 page 6-1

7. Questionnaire & competencies
 page 7-1
Background hemodynamics
Complete hemodynamic picture with PiCCO
(no pulmonary artery catheter required)

- Continuous cardiac output
- Volumetric preload
- Afterload, contractility
- Volume responsiveness
- Pulmonary edema / Lung water

PULSION History

- Leading specialist in less invasive hemodynamic monitoring in ICU
- More than 20 years experience in hemodynamic monitoring
- Paradigm shift in hemodynamics – From pressures to volumes
- Integration of PiCCO® into patient monitoring systems
Background hemodynamics

Optimization of tissue oxygenation - Is measurement of CO enough?

O₂ uptake O₂ transport O₂ extraction O₂ utilization

Oxygen Delivery

Cardiac Output
 - CO

Heart Rate
 - HR

Oxygen Consumption

Mixed/Central Venous Oxygenation
 - SvO₂/ScvO₂*

* 510k for ScvO₂ monitoring submitted

Arterial Oxygen Content

Oxygenation
 - SaO₂

Hemoglobin
 - Hb

Preload
 - GEDV
 - SVV

Afterload
 - SVR

Contractility
 - CFI

Pulmonary edema
 - EVLW

Volume

Vasopressors

Inotropes

Red Blood Cells

1-2
PiCCO²® - See more than others

- Continuous cardiac output
- Volumetric preload
- Afterload
- Contractility
- Volume responsiveness
- Bedside pulmonary edema assessment (Lung water)

General fields of Application

Intensive Care
- Septic Shock
- Cardiogenic Shock
- Burns
- Trauma / Hypovolemic Shock
- ARDS

Peri-operative
- Cardiac Surgery
- Major Surgery
- Neuro Surgery

► for pediatrics and adults
Background hemodynamics

Complete hemodynamics - via CVC and arterial line

Arterial line
(PiCCO® Catheter available in different sizes)

Central venous line
(Standard CVC)

Axillary artery
- Adults: 4F 8 cm, 3.15 in
- Small adults: 3F 7 cm, 2.76 in

Brachial artery
- Adults: 4F 16 cm, 6.29 in
- Adults: 4F 22 cm, 8.66 in

Femoral artery
- Adults: 5F 20 cm, 7.78 in
- Adults: 4F 22 cm, 8.66 in
- Small adults: 4F 16 cm, 6.29 in
- Children: 3F 7 cm, 2.76 in
- Children: 4F 8 cm, 3.15 in
Physiology

Every organism needs energy to function properly.

This requires uptake and distribution of nutrition, fluid and oxygen throughout the body.

Man can survive for weeks without nutrition, for days without water but for only minutes without oxygen.

This means oxygen uptake and distribution is of utmost priority!
Anatomy - the circulation

Nutrition and oxygen are distributed to the organs / tissues via the blood.
What does 'hemodynamics' mean?

"Hemodynamics" is the word used to describe the transport function of the cardiovascular system:

Hemo - blood

dynamics - motion by force

Oxygen transport

The basic aim of the cardiovascular system is cellular oxygen supply

O₂ uptake lungs
O₂ transport blood flow
O₂ extraction organs / tissues
O₂ utilization cells

Insufficient oxygen supply can lead to irreparable damage of vital organs
Physiology and pathophysiology

In healthy individuals, increased oxygen demand is automatically covered by the adaptive mechanisms of the cardiovascular and pulmonary system, e.g. with increased heart rate and breath rate.

In the critically ill patient these normal physiological mechanisms are often impaired, necessitating hemodynamic monitoring and therapies aimed at restoring adequate oxygen supply.

Intensive Care Unit

Intensive care is required for patients with severely impaired vital functions (including circulation and respiration), or for patients at increased risk of developing such impairments.
Typical reasons for admission to ICU

- Severe sepsis
- Septic shock
- Respiratory failure
- Myocardial infarction
- Severe trauma
- Intracerebral bleeds
- Severe liver disease
- Burns
- Transplantation surgery
- Cardiac surgery
- Other high risk surgical procedures

Basic monitoring – non invasive

- Pulse oximetry (SpO₂)
- Electrocardiogram (ECG)
- Non invasive blood pressure (NIBP)

These products are examples to illustrate and are not distributed by PULSION Inc.
Basic monitoring – invasive

Central venous catheter

Arterial catheter

Precise monitoring of certain variables requires often access to the circulatory system.

Advanced hemodynamic monitoring

Echocardiography
Transthoracic (TTE) or
Transesophageal (TEE)

Pulmonary artery catheter
(PAC)

PiCCO-Technology

The Echo technology is a diagnostic tool for visualizing the heart’s morphology. The PA catheter (Swan Ganz) monitors the pulmonary circulation and the PiCCO-Technology monitors the body circulation.
Advanced hemodynamic monitoring – Cardiac output

Cardiac Output - CO
Amount of blood that is transported by the heart in one minute

Advanced hemodynamic monitoring – Cardiac output determinants

What does Cardiac Output depend on?

Cardiac Output

- Stroke Volume
 - Preload
 - Amount of blood inside the heart (filling volume)

- Heart Rate
 - Number of heart beats per minute

- Afterload
 - Resistance against which the heart has to pump

- Contractility
 - Power of the heart muscle
Summary

• The main aim of hemodynamic monitoring is to ensure optimal tissue oxygenation

• Measurement of cardiac output (CO) alone is not enough

• The PiCCO2 provides all the determining components of CO (preload, afterload, contractility and heart rate) as well as the unique ability to assess pulmonary edema at the bedside (extravascular lung water)

• PiCCO2 works via a standard central venous catheter and a special arterial catheter and its use is warranted in all cases where the patient's volume status is unclear and/or where accurate monitoring is required
PiCCO® technology & parameters
PiCCO® - Two methods combined for precise monitoring

Transpulmonary thermodilution

- Thermodilution cardiac output
- Volumetric preload (GEDV - Global End-Diastolic Volume)
- Contractility (CFI - Cardiac Function Index)
- Lung water (EVLW - Extravascular Lung Water)

Pulse contour analysis

- Continuous cardiac output
- Afterload (SVR - Systemic Vascular Resistance)
- Stroke Volume (SV - Stroke Volume)
- Volume responsiveness (SVV - Stroke Volume Variation, PPV- Pulse Pressure Variation)

Transpulmonary Thermodilution

- The cold indicator passes through the right heart, lungs and left heart
- The indicator is detected in a central artery
- Precise cardiac output measurement based on Stewart-Hamilton algorithm
- Breathing cycle independent
- Passage through the heart and lungs allows determination of preload volumes and lung water

Pulse contour analysis

- Stroke volume is reflected by the area under the systolic part of the pressure curve (red area) of one heart beat
- Cardiac output is calculated beat-by-beat: stroke volume x heart rate

The parameters are identified as either continuous or discontinuous next to the illustration of the PiCCO² device.
Thermodilution Cardiac Output (CO)

Cardiac Output - Volume of blood pumped by the heart in one minute
Important determinant for oxygen transport

CO – Cardiac Output
CI – Cardiac Index
• Highly precise measurement using the thermodilution technique
• Using the same calculation as the PA catheter

Determination of Thermodilution Cardiac Output

• Cardiac output is calculated by analysis of the thermodilution curve using a modified Stewart-Hamilton algorithm
• After central venous injection of the cold indicator, the thermistor at the tip of the arterial catheter measures the temperature change downstream

Cardiac output calculation:
Area under the thermodilution curve

\[\text{CO TDa} = \frac{(T_b - T_i) \times V_i \times K}{\int \Delta T_b \times dt} \]

- \(T_b \) = Blood temperature
- \(T_i \) = Injectate temperature
- \(V_i \) = Injectate volume
- \(\int \Delta T_b \times dt \) = Area under the thermodilution curve
- \(K \) = Correction constant, made up of specific weight and specific temperature of blood and injectate
Calibrated Continuous Cardiac Output (PCCO)

Cardiac Output - Cardiac Output (CO) is regarded as one of the most important hemodynamic variables for the assessment of cardiac function and guidance of therapy in critically ill patients. Sakka et al. BJA, 2007

PCCO – Pulse Contour Cardiac Output
PCCI – Pulse Contour Cardiac Index
• Product of stroke volume and heart rate
• Determined beat-by-beat
• Maximum accuracy and safety by recalibration possibility

PiCCO® Continuous Cardiac Output

Cardiac output is the product of stroke volume and heart rate

CO = SV x HR
Preload volume instead of filling pressures

Preload - Volume of blood in the heart available to be pumped

‘Volumetric preload parameters are superior to filling pressures’ Michard, Chest 2003

GEDV – Global End-Diastolic Volume
GEDI – Global End-Diastolic Volume Index

• Filling volume of all four heart chambers
• Adequate preload is an important prerequisite for adequate cardiac output (Frank-Starling curve)
• GEDI is indexed to “predicted body surface area” *

* Indexing particular parameters to the predicted body weight (EVLW) or predicted body surface area (GEDV) rather than the actual body weight or body surface area is more accurate particularly in overweight patients.

Determination of preload

Advanced analysis of the thermodilution curve for transit time and downslope time (MTt, DSt) enables volume determination (Bubble model: each bubble represents a certain blood or fluid volume the bolus is passing (e.g. PBV - Pulmonary blood volume)

Intra-Thoracic Thermal Volume
ITTV = CO x MTt

= Pulmonary Thermal Volume
PTV = CO x DSt

= Global End-Diastolic Volume (GEDV)

PTV = Pulmonary Thermal Volume; Thermal distribution volume in the biggest mixing chamber, i.e. the lungs (includes blood and water); ITTV = Intra-Thoracic Thermal Volume; The total volume in which the indicator can be distributed (chambers between point of injection and detection); CO = Cardiac output; MTt = Mean transit time of the cold indicator from the site of injection to the site of detection, DSt = Exponential downslope time of the arterial thermodilution curve
Volume responsiveness

Volume Responsiveness - predicts whether volume resuscitation (preload increase) will result in an increase in cardiac output

SVV – Stroke Volume Variation
- Variation in stroke volume over the breathing cycle for a specific time frame

PPV – Pulse Pressure Variation
- Variation in pulse pressure over the breathing cycle for a specific time frame

Only applicable in fully mechanically ventilated patients with sinus rhythm!

Determination of volume responsiveness

- **SVmax**
- **SVmin**
- **PPmax**
- **PPmin**

Mechanical Ventilation
- Intrathoracic pressure fluctuations
- Changes in intrathoracic blood volume
- Preload changes
- Fluctuations in stroke volume and pulse pressure
Lung Water - Lung edema assessment at the bedside

EVLW – Extravascular Lung Water reflects pulmonary edema *Katzenelson, CCM 2004*

EVLW – Extravascular Lung Water
ELWI – Extravascular Lung Water Index
- Extravascular lung water (EVLW) represents the extravascular fluid of the lung tissue
- Includes intra-cellular, interstitial and intra-alveolar water (not pleural effusion)
- ELWI is indexed to “Predicted Body Weight”

*Predicted body weight is determined from the body height, gender and age
* Indexing particular parameters to the predicted body weight (EVLW) or predicted body surface area (GEDV) rather than the actual body weight or body surface area is more accurate particularly in overweight patients.

Determination of lung water

- EVLW is the difference between intra-thoracic thermal volume (ITTV) and intra-thoracic blood volume (ITBV) - see below
- ITBV is the blood volume in the heart plus the pulmonary blood volume
- It has been found that ITBV is consistently 25% higher than GEDV

Bubble model: Each bubble represents a certain blood or fluid volume (e.g. PBV - Pulmonary blood volume)
Lung water measurement vs. Chest X-ray

Pulmonary edema

- Pulmonary edema is not easily detected by chest X-ray
- EVLW is a direct quantification of pulmonary edema
- EVLW is much more sensitive than Chest X-ray

ELWI 21 ml/kg BW
Lung water severely increased
Source: Unpublished Data; Azriel Perel, MD, Department of Anaesthesiology and Intensive Care, Sheba Medical Center, Tel Aviv University, Tel Hashomer, Israel

ELWI 11 ml/kg BW
Lung water moderately increased

ELWI 5 ml/kg BW
Lung water normal

Improved outcome based on fluid management

In this study the fluid management was based on wedge pressure monitoring in one and on lung water in the other group out of 101 critically ill patients.

Parameters

Afterload

Systemic vascular resistance is an important determinant of afterload.

SVR - Systemic Vascular Resistance
SVRI - Systemic Vascular Resistance Index
- SVR is the resistance the blood encounters as it flows through the vascular system.
- SVRI is indexed to body surface area.

Determination of systemic vascular resistance

\[
\text{Flow (CO)} = \frac{\text{Pressure}}{\text{Resistance}}
\]

- Vasoconstriction: Flow (CO) ↓
- Vasodilation: Flow (CO) ↑

if pressure is constant.

BSA = Body Surface Area
Contractility

Contractility describes the performance of the cardiac muscle

CFI - Cardiac Function Index
- Parameter of the global cardiac contractility
- The cardiac function index is the ratio of flow and preload

Frank-Starling curve

The Frank-Starling curve reflects the interaction between preload and stroke volume. Increasing preload increases the stroke volume up to a maximum.

1. Increase preload volume up to its optimum
2. Increased contractility shifts the curve upwards (see graph)
Reduction of patient complications and hospital / ICU stay decreases costs.

Stroke Volume (SV) / Cardiac Output (CO) - Hospital length of stay reduced

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Target-parameter</th>
<th>Control group</th>
<th>Protocol group</th>
<th>Patient Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearse 13)</td>
<td>CO</td>
<td>14 days</td>
<td>11 days</td>
<td>high risk surgery</td>
</tr>
<tr>
<td>Gan 9)</td>
<td>CO, SV</td>
<td>7 days</td>
<td>5 days</td>
<td>major surgery</td>
</tr>
<tr>
<td>Wilson 10)</td>
<td>CI, DO₂</td>
<td>22 days</td>
<td>13 days</td>
<td>major surgery</td>
</tr>
<tr>
<td>Shoemaker 11)</td>
<td>CI, DO₂</td>
<td>25 days</td>
<td>19 days</td>
<td>high risk surgery</td>
</tr>
<tr>
<td>McKendry 4)</td>
<td>CI, DO₂</td>
<td>9 days</td>
<td>7 days</td>
<td>high risk surgery</td>
</tr>
<tr>
<td>Sinclair 6)</td>
<td>CO, SV</td>
<td>20 days</td>
<td>12 days</td>
<td>hip fracture repair</td>
</tr>
</tbody>
</table>

Stroke Volume (SV) / Cardiac Output (CO) - Patient complications reduced

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Target-parameter</th>
<th>Control group</th>
<th>Protocol group</th>
<th>Patient Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoemaker 11)</td>
<td>CI, DO₂</td>
<td>1.34 complications per patient</td>
<td>0.76 complications per patient</td>
<td>high risk surgery</td>
</tr>
<tr>
<td>Shoemaker 11)</td>
<td>CI, DO₂</td>
<td>33 % mortality</td>
<td>4 % mortality</td>
<td>high risk surgery</td>
</tr>
<tr>
<td>McKendry 4)</td>
<td>SVI</td>
<td>31% complications</td>
<td>19% complications</td>
<td>cardiac surgery</td>
</tr>
<tr>
<td>Wakeling 7)</td>
<td>SV</td>
<td>59% complications</td>
<td>37.5% complications</td>
<td>colorectal surgery</td>
</tr>
</tbody>
</table>

GEDV / PPV / ITBV - Patient complications reduced

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Target-parameter</th>
<th>Control group</th>
<th>Protocol group</th>
<th>Patient Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Csontos 8)</td>
<td>ITBV</td>
<td>MODS 5.0</td>
<td>MODS 3.0</td>
<td>burn patients</td>
</tr>
<tr>
<td>Lopes 3)</td>
<td>PPV</td>
<td>3.9 complications per patient</td>
<td>1.4 complications per patient</td>
<td>high risk surgery</td>
</tr>
<tr>
<td>Smetkin 12)</td>
<td>ITBV</td>
<td>5 patients with complications</td>
<td>1 patient with complications</td>
<td>cardiac surgery</td>
</tr>
</tbody>
</table>

GEDV / PPV / ITBV - ICU Hospital stay reduced

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Target-parameter</th>
<th>Control group</th>
<th>Protocol group</th>
<th>Patient Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goepfert 2)</td>
<td>GEDV</td>
<td>33 h ICU stay</td>
<td>25 h</td>
<td>cardiac surgery</td>
</tr>
<tr>
<td>Smetkin 12)</td>
<td>ITBV</td>
<td>15 days ICU stay</td>
<td>12 days</td>
<td>cardiac surgery</td>
</tr>
</tbody>
</table>

Lung Water (EVLW) - Ventilation / ICU days reduced

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Target-parameter</th>
<th>Control group</th>
<th>Protocol group</th>
<th>Patient Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitchell 5)</td>
<td>EVLW</td>
<td>22 ventilation days</td>
<td>9 ventilation days</td>
<td>mixed ICU patients</td>
</tr>
<tr>
<td>Mitchell 5)</td>
<td>EVLW</td>
<td>15 ICU days</td>
<td>7 ICU days</td>
<td>mixed ICU patients</td>
</tr>
</tbody>
</table>
Reductions of patient complications and hospital / ICU stay decrease costs.
PiCCO²® - Visualization of hemodynamic parameters

Overview

'SpiderVision' screen
Dynamic status indicator

'Details'

'Profiles' screen
Detailed insight at parameter level

'Trends'

'Trends' screen
Clinical trends and therapy results
Operation via touch screen or navigation dial

PiCCO²® - The new hemodynamic monitor

- Brilliant 13.3” color wide screen display
- Touch-screen, navigation dial
- Slim ergonomic design
- Small footprint
- Compatible to standard mounting systems
- Integrated backup battery
Hemodynamic Measurement Guide - Normal Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Abbreviation</th>
<th>Range</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac Index</td>
<td>CI</td>
<td>3.0 – 5.0</td>
<td>l/min/m²</td>
</tr>
<tr>
<td>Stroke Volume Index</td>
<td>SVI</td>
<td>40 – 60</td>
<td>ml/m²</td>
</tr>
<tr>
<td>Global End-Diastolic Volume Index</td>
<td>GEDI</td>
<td>680 – 800</td>
<td>ml/m²</td>
</tr>
<tr>
<td>Intrathoracic Blood Volume Index</td>
<td>ITBI</td>
<td>850 – 1000</td>
<td>ml/m²</td>
</tr>
<tr>
<td>Stroke Volume Variation</td>
<td>SVV</td>
<td>< 10</td>
<td>%</td>
</tr>
<tr>
<td>Pulse Pressure Variation</td>
<td>PPV</td>
<td>< 10</td>
<td>%</td>
</tr>
<tr>
<td>Systemic Vascular Resistance Index</td>
<td>SVRI</td>
<td>1970 - 2390</td>
<td>dynscm⁻⁵ *m²</td>
</tr>
<tr>
<td>Cardiac Function Index</td>
<td>CFI</td>
<td>4.5 – 6.5</td>
<td>1/min</td>
</tr>
<tr>
<td>Mean Arterial Pressure</td>
<td>MAP</td>
<td>70 – 90</td>
<td>mmHg</td>
</tr>
<tr>
<td>Extravascular Lung Water Index</td>
<td>ELWI</td>
<td>< 10</td>
<td>ml/kg</td>
</tr>
</tbody>
</table>

WARNING: PULSION Medical Systems is a medical device manufacturer and does not practice medicine. PULSION does not recommend these normal values for a specific patient. The treating physician is responsible for determining and utilizing the appropriate diagnostic and therapeutic measures for each individual patient.

This decision model is not obligatory. It cannot replace the individual therapeutic decisions of the treating physician.

![Decision Model Diagram]

See instructions for use and package insert for full prescribing information. Technical specifications are subject to change without further notice.

V+ = volume loading V- = volume reduction Cat = catecholamine / cardiovascular agents

*SVV is only applicable in fully ventilated patients without cardiac arrhythmia

2-14
• The PiCCO® Technology utilizes two methods for precise parameter determination: Transpulmonary thermodilution and pulse contour analysis

• The thermodilution method calibrates the pulse contour parameters for increased accuracy and precision

• The PiCCO® parameters (flow, preload, lung water, afterload, contractility and volume responsiveness) are essential for complete hemodynamic assessment of the patient

• Utilization of the various parameters provided by the PiCCO₂ have been shown to improve patient outcome

• Innovative visualization of the parameters by PiCCO₂ enables quick and accurate patient assessment and management
Setup & disposables
• Designed for hemodynamic monitoring with the PiCCO®-Technology
• Equipped with a temperature sensor at the catheter tip for transpulmonary thermodilution
• Pressure extension line for arterial pressure monitoring

For use with PiCCO$_2$®, PiCCO plus®, Philips PiCCO-Technology Module and Dräger Infinity® PiCCO SmartPod™.
Catheters - Choice & application

Central venous line
(Standard CVC)

Arterial line
(PICCO® Catheter available in different sizes)

Axillary artery
Adults: 4F 8 cm, 3.15 in
Small adults: 3F 7 cm, 2.76 in

Brachial artery
Adults: 4F 16 cm, 6.29 in
Adults: 4F 22 cm, 8.66 in

Femoral artery
Adults: 5F 20 cm, 7.78 in
Adults: 4F 22 cm, 8.66 in
Small adults: 4F 16 cm, 6.29 in
Children: 3F 7 cm, 2.76 in
Children: 4F 8 cm, 3.15 in
Catheter choice and application

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Femoral artery in adults</td>
<td>Cubital brachial artery in adults</td>
<td>Femoral artery in small adults</td>
<td>Axillary artery in adults</td>
<td>Femoral artery in children and infants</td>
</tr>
<tr>
<td></td>
<td>Standard catheter</td>
<td>Femoral artery in adults</td>
<td>Proximal brachial artery in children</td>
<td>Axillary artery in small adults</td>
<td></td>
</tr>
<tr>
<td>Outer diameter</td>
<td>5F (~16G) 0.07 in (1.7 mm)</td>
<td>4F (~18G) 0.05 in (1.4 mm)</td>
<td>4F (~18G) 0.05 in (1.4 mm)</td>
<td>4F (~18G) 0.05 in (1.4 mm)</td>
<td>3F (~20G) 0.04 in (1 mm)</td>
</tr>
<tr>
<td>Usable length</td>
<td>7.78 in (20 cm)</td>
<td>8.66 in (22 cm)</td>
<td>6.29 in (16 cm)</td>
<td>3.15 in (8 cm)</td>
<td>2.76 in (7 cm)</td>
</tr>
<tr>
<td>Inner diameter pressure lumen</td>
<td>0.028 in (0.71 mm)</td>
<td>0.028 in (0.71 mm)</td>
<td>0.024 in (0.61 mm)</td>
<td>0.024 in (0.61 mm)</td>
<td>0.020 in (0.50 mm)</td>
</tr>
<tr>
<td>Characteristics and length of the guide wire</td>
<td>Ø 0.021 in / 0.53 mm length: 23.62 in (600 mm) both ends soft: - radius of J: 0.118 in (3 mm) - straight</td>
<td>Ø 0.021 in / 0.53 mm length: 27.59 in (700 mm) both ends soft and straight</td>
<td>Ø 0.021 in / 0.53 mm length: 23.62 in (600 mm) both ends soft: - radius of J: 0.118 in (3 mm) - straight</td>
<td>Ø 0.021 in / 0.53 mm length: 17.72 in (450 mm) both ends soft: - radius of J: 0.118 in (3 mm) - straight</td>
<td>Ø 0.017 in / 0.43 mm length: 15.75 in (400 mm) both ends soft and straight</td>
</tr>
<tr>
<td>Vessel dilator</td>
<td>Ø 5F (0.067 in) length: 6.693 in (17 cm)</td>
<td>Ø 4F (0.051 in) length: 5.118 in (13 cm)</td>
<td>Ø 4F (0.051 in) length: 5.118 in (13 cm)</td>
<td>Ø 4F (0.051 in) length: 5.118 in (13 cm)</td>
<td>-</td>
</tr>
<tr>
<td>Article number single packed guide wire</td>
<td>PVSG21-60SJD</td>
<td>PVSG21-70SSN</td>
<td>PVSG21-60SJD</td>
<td>PVSG21-45SJD</td>
<td>PVSG17-40SSN</td>
</tr>
</tbody>
</table>
Catheter insertion – The Seldinger technique

1. Insert cannula (18G or 20G) into artery at a flat angle (30-45°)

 Tips:
 - in cases of multiple cannulation efforts, renew cannula
 - flush cannula to prevent obstruction

2. Partially insert guide wire into artery via the cannula

 Tips:
 - always try end with „J“ first
 - advancement of wire must be effortless
 - do not unclasp cannula while advancing wire
 - never withdraw wire through cannula

3. Withdraw cannula

 Tip:
 - do not let go of wire

4. Perform small skin incision (not mandatory)

 Tips:
 - only in cases of particularly thick/strong skin
 - Perform only a small incision to avoid cutting through the vessel wall (reduces risk of bleeding)
Catheter insertion – The Seldinger technique

Insert dilator into vessel

Tips:
• end of wire must stick out of the end of the dilator
• grip dilator close to skin surface
• never use excessive force
• if dilator doesn’t penetrate skin easily, try rotating movement
• avoid kinking of wire

Remove dilator, leaving guide wire in place

Tips:
• do not let go of wire

Insert catheter into vessel

Tips:
• end of wire must stick out of the end of catheter
• grip catheter close to the skin surface
• never use force
• if catheter doesn’t penetrate skin easily, try rotating movement
• avoid kinking of wire

Remove guide wire

Tips:
• do not let go of catheter
Standard setup:

1. Injectate sensor cable
2. Arterial connection cable
3. Pressure connection cable
4. Pressure output adapter
5. Power socket

A. PiCCO® Catheter
B. Flush bag
A. Connect the thermistor cable (1) to the orange socket on the right side of the PiCCO₂® device. Connect the injectate cable (2) to the brown socket of the thermistor cable (3).

B. Connect the blue end of the injectate cable (2) to the injectate sensor housing (4) which should be preferably on the distal lumen of the central venous catheter.

C. Connect the end of the thermistor cable (4 pin end) to the red thermistor connector of the already placed catheter.

D. Connect the pressure connection cable (5) to the red socket on the right side of the PiCCO₂® device. Connect the white end of the pressure connection cable (6) to the monitoring cable (7) in the pressure transducer kit (8).

E. Prime the monitoring kit and attach to a flush bag. Attach the pre-primed arterial pressure line and three-way stopcock to the PiCCO₂® catheter (9).
F. Switch on the device. The device will ask whether it is a new patient or not. Select 'YES' accordingly, confirm, then enter patient specific data, including height, weight, category (adult/ped), gender by touching the screen over the area you want to change. Press 'EXIT' (10) to move to the Zero Adjustment Screen.

![Zero Adjustment Screen]

G. Perform Zero Adjustment on the PiCCO2 first (after opening transducer to the atmosphere) and then the bedside monitor. Enter the patient CVP here (11). Press 'EXIT' to go to the thermodilution screen.

![Thermodilution Screen]

H. Perform 3 initial thermodilution measurements to calibrate the device and obtain the parameters. Press exit once finished to go to the main monitoring screen.

![Thermodilution Results]

<table>
<thead>
<tr>
<th>Amount to be injected</th>
<th>ELWI < 10</th>
<th>ELWI > 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg BW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 3</td>
<td>2 ml</td>
<td>2 ml</td>
</tr>
<tr>
<td>< 10</td>
<td>2 ml</td>
<td>3 ml</td>
</tr>
<tr>
<td>< 25</td>
<td>3 ml</td>
<td>5 ml</td>
</tr>
<tr>
<td>< 50</td>
<td>5 ml</td>
<td>10 ml</td>
</tr>
<tr>
<td>< 100</td>
<td>10 ml</td>
<td>15 ml</td>
</tr>
<tr>
<td>≥ 100</td>
<td>15 ml</td>
<td>20 ml</td>
</tr>
</tbody>
</table>

I. To navigate around the screen either touch the area you wish to change or use the navigation dial.
Setup PiCCO plus®

A Central venous catheter
B Injectate-temperature sensor housing PV4046 (included in PV8115)
C Injectate-temperature sensor cable PC80109
D PiCCO® Catheter (e.g. PV2015L20N)
E PULSION® disposable pressure transducer
F PiCCO® Monitoring Kit PV8115
G Pressure cable PMK-206
H AUX Adapter cable PC81200 (to connect on rear panel)
I Connection cable to bedside monitor PMK-XXX
Patient Admission

1. Choose <Yes> for a new patient, old data will be deleted, modify with ± and

2. Confirm with Enter

3. Enter patient ID number, weight, height and gender of the patient. If ID number is changed, previously stored data will be deleted for safety reasons.

 Arterial catheter will be detected automatically.

4. The minimal required injectate volume is recommended in (). 15ml iced NaCl 0.9% as the default setting for adult patients.

5. Enter CVP.

6. Upper/lower limit of the display range of PCCO.

 Upper/lower limit of the display range of the arterial blood pressure.

Zeroing

1. Open transducer to the atmospheric pressure.

2. Press zero button.

 Perform zeroing first on PiCCO plus® then on bedside monitor.

3. Confirm with Enter

 Difference from pressure transducer to patient’s heart level can be corrected.

 Default setting <0>.

4. Profile screen

5. Thermodilution screen

6. Configuration screen

7. Input screen

8. Pulse-contour screen

9. Pressure-zeroing screen
Setup PiCCO plus®

Configuration

* Caution: Modifying date and/or time will automatically delete patient related data.

Press \[\text{Select}\] to go to the Configuration-screen (see previous page)

To select most important PiCCO® parameters choose \(<\text{basic}\)> and \[\text{+}—\text{-}\]

Basic setup: Can not be changed and displays most common parameters as default.

Individual: User can configure own parameter selection.

For customized parameter selection switch from \(<\text{basic}\)> to \(<\text{individual}\>) with \[\text{+}\] and \[\text{-}\]

Thermodilution

Press \[\text{Select}\] for Thermodilution screen.

1. Press \[\text{STA}\] to perform a measurement.
2. Wait until \text{STABLE} appears.
 Perform a rapid and smooth injection.
Thermodilution II

1. Press STA for further measurements.

Initially perform 3 thermodilution measurements.

* In cases where EVLW >10ml/kg it is recommended to use iced injectate for further measurements.

** If $\Delta T <0,15^\circ C (32,27^\circ F)$, it may be necessary to increase the injectate amount and/or use iced injectate. In this case, select iced injectate <46°F in the input screen.

2. Press INFO to change to info screen.

Deviating measurements ("?" at value) should be deleted.

Calibrate

Deviating measurements ("?"") should be selected with ↑ and ↓, confirm by pressing X DEL once. Selected thermodilution curve is displayed.

To delete this measurement press X DEL again.

It is only possible to delete the current measurements under the dashed line.

The mean results of the thermodilution measurements of the last 10 minutes automatically calibrate the continuous cardiac output.
Results

CI = Cardiac Index
GEDI or ITBI = Global End-Diastolic Volume Index or Intrathoracic Blood Volume Index
EVLW = Extravascular Lung Water
PCCI = Pulse Contour Cardiac Index

1. Press to display arterial pressure curve.
2. The display range of PCCI can be changed in the Configuration-Screen.
3. NB: Values can be displayed either as index values (CCI) or absolute values (CCO) by pressing .
• Set up of the PiCCO-Technologies including the PiCCO$_2^\text{®}$, PiCCO plus$^\text{®}$, Philips PiCCO Module and Draeger Smart Pod involves an initial calibration of the cardiac output measurement by 3 thermodilution measurements.

• Entering accurate patient data including height and weight ensures the volumetric parameters are specifically indexed to that patients individual properties.

• Thermodilution measurements automatically recalibrate the continuous parameters thereby ensuring accurate dynamic patient data.

• Zeroing adjustment of the pressure transducer on the PiCCO$^\text{®}$ first then the patient’s bedside monitor ensures accurate measurements.
• The PiCCO® catheter is available in a range of sizes for different patient applications.

• The Seldinger technique is used for inserting the catheter, independent of site of insertion.

• Choice of insertion site is dependent on the patients specific clinical situation.

• Use of the femoral artery for the catheter insertion site has been shown to provide accurate information even in profoundly shocked patients, with no increased risk of blood stream infections (see literature - 'Catheters' page 6-17).
<table>
<thead>
<tr>
<th>Error</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial pressure measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure curve absent</td>
<td>• Pressure line not correctly attached</td>
<td>• Check pressure line, stop-cock, cable and plug</td>
</tr>
<tr>
<td></td>
<td>• Pressure line blocked</td>
<td>• Flush pressure line</td>
</tr>
<tr>
<td></td>
<td>• Cable or device defect</td>
<td>• Connect pressure transducer directly to the bedside monitor for testing</td>
</tr>
<tr>
<td>Abnormal pressure curve</td>
<td>• Catheter malpositioned</td>
<td>• Check or change catheter position</td>
</tr>
<tr>
<td></td>
<td>• Blocked catheter lumen</td>
<td>• Flush catheter</td>
</tr>
<tr>
<td></td>
<td>• Arrhythmia, extra systole</td>
<td>• Regulate therapeutically</td>
</tr>
<tr>
<td></td>
<td>• Tachycardia (> 240 bpm)</td>
<td>• Regulate therapeutically</td>
</tr>
<tr>
<td>Flat pressure curve</td>
<td>• Inappropriate scale settings</td>
<td>• Set scale of pressure curve</td>
</tr>
<tr>
<td></td>
<td>• Failed connection of pressure system</td>
<td>• Check and ensure pressure system connected correctly</td>
</tr>
<tr>
<td></td>
<td>• Flush has insufficient pressure</td>
<td>• Increase the flush pressure to 250-300 mmHg</td>
</tr>
<tr>
<td></td>
<td>• None or wrong zero adjustment</td>
<td>• Carry out / repeat zero adjustment</td>
</tr>
<tr>
<td></td>
<td>• Damped pressure transducer transmission from:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Airbubbles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Modifications of pressure line</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Malposition of stop cocks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Kinked catheter or pressure line</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hypotonia</td>
<td></td>
</tr>
<tr>
<td>Indicator injection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injection was not detected</td>
<td>• CVC malpositioned</td>
<td>• Correct position</td>
</tr>
<tr>
<td></td>
<td>• 3-way-stopcock incorrectly adjusted</td>
<td>• Adjust 3-way-stopcock</td>
</tr>
<tr>
<td></td>
<td>• Temperature sensor housing pin clotted</td>
<td>• Change temperature sensor housing</td>
</tr>
<tr>
<td></td>
<td>• Temperature sensor housing / sensor not connected correctly</td>
<td>• Check connection („click-sound”)</td>
</tr>
<tr>
<td></td>
<td>• Defective temperature sensor</td>
<td>• Check or change sensor</td>
</tr>
<tr>
<td>Thermodilution results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results implausible</td>
<td>Amount injected does not match amount to be injected displayed by device</td>
<td>Inject correct volume</td>
</tr>
<tr>
<td>Pulse contour results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration PCCO not possible</td>
<td>Arterial pressure curve absent or faulty</td>
<td>Check / optimize arterial pressure measurement</td>
</tr>
<tr>
<td>Large variation in values</td>
<td>Arrhythmia, extra systoles</td>
<td>Regulate therapeutically</td>
</tr>
<tr>
<td>Error</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>Thermodilution curve</td>
<td>Rapid cooling or warming of patient</td>
<td>Wait for stabilisation phase</td>
</tr>
<tr>
<td>Unstable temperature baseline measurement</td>
<td>Massive volume loading</td>
<td>Stop volume supply if possible</td>
</tr>
<tr>
<td></td>
<td>Arterial connection cable broken or not correctly connected</td>
<td>Check cable connection, replace if necessary</td>
</tr>
<tr>
<td></td>
<td>Faulty thermistor on PiCCO catheter</td>
<td>Check temperature change when flushing catheter, replace catheter if no temperature change seen</td>
</tr>
<tr>
<td></td>
<td>Thermistor lying against vessel wall</td>
<td>Change catheter or patient position</td>
</tr>
<tr>
<td>Thermodilution curve is not displayed</td>
<td>Incorrect injection at central venous catheter</td>
<td>Perform central venous injection correctly</td>
</tr>
<tr>
<td></td>
<td>Faulty thermistor on PiCCO catheter</td>
<td>Check temperature change when flushing catheter, replace catheter if no temperature change seen</td>
</tr>
<tr>
<td></td>
<td>Broken or failed cable-connection of arterial connection cable</td>
<td>Check cable connection, change if necessary</td>
</tr>
<tr>
<td>Thermodilution curve display is too late (Time out limit)</td>
<td>Injection too slow</td>
<td>Inject faster (< 7s)</td>
</tr>
<tr>
<td></td>
<td>Very low cardiac output or very high lung water</td>
<td>Use colder and/or more injectate</td>
</tr>
<tr>
<td>Thermodilution curve very flat</td>
<td>Inappropriate scale settings</td>
<td>Adjust scaling</td>
</tr>
<tr>
<td></td>
<td>Injectate too warm</td>
<td>Use colder injectate</td>
</tr>
<tr>
<td></td>
<td>Very low cardiac output or very high lung water</td>
<td>Use colder and/or more injectate</td>
</tr>
<tr>
<td>Thermodilution curve displays more than one peak</td>
<td>Injection not smooth</td>
<td>Ensure smooth injection</td>
</tr>
<tr>
<td></td>
<td>Existing intracardiac shunts</td>
<td>Perform shunt diagnosis</td>
</tr>
</tbody>
</table>
1. **Have you got a good arterial pressure waveform trace?**

Press on the waveform to change the amplitude of the waveform. If the trace is absent or dampened, check position of patient and/or catheter, check for presence of air bubbles in blood pressure tubing, remove any additional pressure lines, check for kinks in tubing. Check that the transducer is open to catheter and pressure bag inflated. Check all cables are correctly attached (see operator manual for further details). Flush with saline using flush device.

2. **Have you got an arterial pressure appropriate for this patient?**

The arterial pressure numbers are located on the top left hand side of the display page (see above). If a false low or high measurement is suspected, check level of transducer (it should be placed in line with the phlebostatic axis). Check the machine was ‘zeroed’ correctly (see operator manual for further details).

3. **Have you got an adequate / appropriate Cardiac Output / Index for the patient’s clinical situation?**

If CO/CI appears inappropriate (too low or too high), check in the <Patient> screen that the patients correct weight and height have been entered. To enter this screen press the patient information bar at the top of the screen.

NB the thermodilution measurement may not work in patients who have extremely low CO/CI, for e.g. <1.2 l/min.

4. **Were you in the Thermodilution screen when you performed the injection?**

Press the grey Thermodilution screen button on the bottom left of the display. Press start and wait until the message “INJECT” appears on the screen. Inject as quickly and smoothly as possible.
5. Did you inject the correct amount and correct temperature of injectate?
Check the thermodilution screen. The amount of injectate can be changed depending on patients weight. In general 15cc is the appropriate amount for an adult patient. It is recommended that the temperature of injectate be ≤ 46.4°F in all instances. Change injectate volume in configuration ‘Measurement Screen’ if necessary.

6. Did you inject as quickly (under 7 secs) and steadily as possible?
The device will ignore or reject injections under 0.5 sec or over 10 seconds. If necessary inject again, injecting as quickly and as smoothly as possible. Make sure you do not touch the end of the plunger UNTIL you are ready to inject.

7. Was the bolus cold enough?
The temperature of the injectate (Tinj) is displayed on the Thermodilution screen in the summary data above each completed thermodilution curve. There must be a difference in temperature of at least 0.15 °C (32.27°F) for the thermodilution measurement to be recognized (shown as ΔT). To display this information go into the ‘Measurement Screen’ and ensure ‘Display Vinj & Tinj’ says <Yes>.

8. Did the device display ‘Injection’ whilst you were injecting?
The device will detect if you have performed a correct thermodilution measurement (the word “injection” appears below the start button). If this did not happen, check the device was ready (see section above), check amount and temperature of injectate (see section above) and try again.

9. Is there only one three way tap between the patient and the injectate temperature sensor housing?
The point of injection must be as close as possible to the injectate temperature sensor housing which must be as close as possible to the patient. Remove any additional 3 way taps.

10. When you injected did the injectate pass through the injectate temperature sensor housing?
Check the position of the three way tap is only open to the patient not other infusions (see above). If this is not the case, correct and re-inject.

11. Were all other infusions switched off during the injection?
To ensure the injectate remains in a bolus and as cold as possible other infusions that are running through the same lumen should be temporarily suspended during the thermodilution injection. Do not turn the 3 way tap back until the thermodilution curve has been completed. This includes the pressure line for the CVP.

12. Is the injectate temperature sensor cable connected correctly?
Ensure the cable is connected to both the sensor at the CVC port and the arterial PiCCO catheter.
Special clinical situations

General

Hypothermia
• There is no influence on the thermodilution measurements as long as the patient’s temperature is stable. Cooled injectate should be used.

Fluctuating blood temperature
• Temperature fluctuations from baseline are compensated by the device. Thermodilution measurement is not recommended in the event where a stable baseline is not possible.

Basic requirements for the assessment of the volume responsiveness parameters (SVV, PPV)
• Controlled mechanical ventilation with no spontaneous breaths
• Sinus rhythm without arrhythmias or artefacts

Contraindications and complications

No absolute contraindications
• Usual precautions should be considered when accessing larger blood vessels. For example presence of coagulation problems, grafts etc. Other sites such as the axillary artery can be used.

No increased complication rate
• Usual risks associated with arterial puncture: puncture injury, infection (extremely rare), impaired blood flow, hematoma.
• The maximum recommended placement period for the PiCCO catheter is 10 days.

No specific application restrictions
• As it is possible to use normal saline for the thermodilution measurements, there are no restrictions on the number of measurements possible, including in pregnancy and with children

Specific Therapies

Vasoconstrictors / Inotropes / Volume Therapy
• All parameters are correctly calculated. During periods of unstability where there are significant changes in the catecholamine requirements, or volume therapy, recalibration of the pulse contour analysis is recommended

Intra-aortic Balloon Pump (IABP)
• The thermodilution parameters (CO, GEDI, EVLW) are measured correctly.
• Pulse contour analysis is not always accurate.

Renal Replacement Therapy (continuous hemofiltration / dialysis)
• All the parameters are measured correctly provided the dialysis out- and inflow catheters are not in the path of the indicator
Heart

Valvular Insufficiency
• Regurgitation of the thermodilution injectate can prolong the transit time of the indicator, or interfere with the thermodilution curve. However, where a thermodilution curve is possible, the calculation of the cardiac output is correct. The extended mean transit time of the injectate can result in an over-estimation in the GEDI / ITBI.

Aortic Stenosis
• All parameters are correctly measured

Intra-cardiac Shunts
• Due to the marked alteration in the thermodilution curve, no valid values are able to be calculated. In less severe shunts, measurements may be possible. In left-to-right shunts, the CO is determined correctly.

Aortic aneurysms
• GEDI / ITBI is increased due to the volume of the aortic aneurysm, this can be avoided by placement of the PiCCO catheter in the axillary artery.

Cardiac Arrhythmia
• The thermodilution parameters are measured correctly.
• The pulse contour analysis is correct in mild to moderate rhythm disturbances (normal rate atrial flutter / fibrillation, bigeminal –, trigeminal or incidental extra systoles)
• In severe cardiac rhythm disturbances (tachyarhythmias, supraventricular tachycardia), pulse contour analysis may be inaccurate. It is recommended to recalibrate with 3-5 thermodilution measurements.

Lung

Partial Lung Resection
• Correct calculation of the cardiac output and GEDI. The degree of potential under-estimation of the ELWI is dependent on the amount of lung resected. The trend of the ELWI remains accurate.

Pulmonary perfusion disturbances (e.g. pulmonary embolism)
• The ELWI is underestimated when there are significant perfusion disturbances.

Pleural effusion
• There is no influence on the ELWI measurement because the contact area between the indicator and pleural fluid is minimal.
For training and demonstration purposes, a fully functional demo mode is available from version 8.1.0.3 onwards.

- All procedures are able to be demonstrated in demo mode, including Admission, Zeroing, Thermodilution Measurement and Calibration of the Pulse Contour Analysis, and Basic Monitoring.
- The demo mode is marked with "DEMO DEMO DEMO" at the top of the screen
- Under no circumstances should the PiCCO₂® Monitor be connected to the patient whilst it is in Demo Mode

Switch to Demo Mode

1. Remove all cables from the patient and the device
2. Press the parameter field on the right hand side of the screen
3. Press the 'SERVICE'-button in the 'Monitor' configuration tab
4. Enter the password 'EDUCATION' and confirm with return

5. Choose 'PiCCO' mode

6. The PiCCO₂ now switches to the 'DEMO' Mode

7. To switch the 'DEMO' off, simply switch the device off and then on again.

8. Please ensure after switching the device off and on again that the DEMO mode warning is no longer present at the top of the display.
• Injecting as smoothly and quickly as possible (under 7 seconds) is essential for correct thermodilution measurement. As normal saline is used there are no restrictions on the number of possible measurements.

• Patients with very low cardiac output, or very high extravascular lung water may require more and / or colder injectate.

• All other infusions must remain turned off during the duration of the thermodilution measurement.

• The usual precautions when accessing larger blood vessels should be considered when inserting the PiCCO catheter.

• All PiCCO2® monitors can be put into demo mode for training purposes.
Case studies

- Cardiac Output
- Volume or catecholamines?
- Cardiac Preload
- Extravascular Lung Water
Optimal management of critically ill patients demands accurate and continuous monitoring of their hemodynamic status. Such monitoring can be done by clinical assessment and by using a variety of available advanced monitoring techniques. It seems, however, that in recent years many clinicians have become wary of these techniques, and have either minimized or altogether stopped using any advanced methods of hemodynamic monitoring when managing critically ill patients.

An illustrative case of what I perceive to be insufficient monitoring has been presented in one of the Internet critical care discussion groups. The presentation described a 72 year old man with a significant cardiac history, who became septic (worsening acidosis, oliguria and hypotension) following major surgery that included the removal of a large renal tumor and a necrotic gallbladder. The patient had a positive fluid balance of 20 l over 24h, received „a bit of noradrenaline“ and eventually had a sudden cardiac arrest. In answer to a comment that the patient may have been under-monitored, the response was: “He was actually on noradrenaline to achieve a target blood pressure of 70 mmHg…we actually monitored metabolic function of the liver (lactate), skin perfusion (clinical assessment), urine output - all good measures of organ function and perfusion rather than simply arbitrary pressures, volumes or flows….So what cardiac output is the right one for this patient? What level of preload is right? What level of lung water is right?...I would be happy to use more monitors if somebody could show me they made a difference… The biggest problem with ALL the fancy numbers…is that…in the individual patient… you have NO idea what the „best“ number is supposed to be“.

One of the main reasons for this ‘back to basics’ movement is the repeatedly reported failure of the PAC to improve patient outcome. These reports have led not only to repeated pleas to discontinue the use of the PAC and to a significant decrease in its clinical use, but also to a general feeling of mistrust towards any of the new alternative monitoring techniques which have emerged in the meantime. We have to remind ourselves, however, that earlier studies have repeatedly shown that the PAC is superior to clinical evaluation in the hemodynamic assessment of critically ill patients, and that as many as half of the significant hemodynamic abnormalities cannot be adequately assessed based on clinical experience and physical examination alone. These studies have also shown that physicians were generally confident of their clinical estimates of hemodynamic variables, but there was no relation between confidence and accuracy. Moreover, experienced physicians were no more accurate than less experienced ones, although they were significantly more confident. Hence the critical care community seemed to have learned at that time that clinical examination and vital signs alone are unreliable in the evaluation of the hemodynamic status and that more advanced monitoring tools may give us new important information that is relevant to patient care.

The major value of the PAC lies in its ability to measure the cardiac output (CO). Although the conflicting results of the various studies that were aimed at optimizing oxygen delivery made it unclear what target CO values we should aim for, it is still imperative to identify those instances in which a very low or a very high CO is undetectable by clinical examination alone. However, although identifying a low CO is of great importance, it still does not necessarily point to the right therapeutic decision, e.g., fluids, inotropes, vasopressors. The next step in the hemodynamic assessment is the evaluation of the volume status, which, when the PAC is being used, is based on the measurement of the filling pressures (CVP, PAOP). This indeed is the major flaw of the PAC since filling pressures have been repeatedly shown to be unreliable in assessing the volume of the heart chambers and in predicting the response of the patient to fluid loading.

It is therefore unclear why so many clinicians still rely on filling pressures to guide fluid therapy. What is even more disturbing is the fact that pre-determined levels of filling pressures are being used as end-points of resuscitation, as is the case in both the 2004 Update of the...
Practice Parameters for Hemodynamic Support of Sepsis in Adult Patients and in the Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock. The current literature clearly shows that volumetric parameters of preload (e.g., the LV end-diastolic area measured by echo or the global end-diastolic volume – GEDV – measured by the PiCCO, reflect better the status of preload than the filling pressures. In addition, in patients who are on fully controlled mechanical ventilation, functional hemodynamic parameters (i.e., SPV, SVV, PPV, RSVT) are far superior to both filling pressures and volumetric parameters in the prediction of fluid responsiveness. Hence the information provided by the PAC is not reliable enough to identify latent hypovolemia, neither can it reliably prevent fluid overload or alert the care-giver to the development of pulmonary edema. This is especially true in the presence of increased pulmonary microvascular permeability, where aggressive optimization of the cardiovascular status may have grave pulmonary consequences. It is in these situations that a direct measurement of extravascular lung water is of utmost importance. These shortcomings of the PAC may explain the claim that the use of the PAC is frequently associated with an aggressive style of treatment which, in turn, leads to adverse outcomes. In particular the PAC was shown in a number of studies to be associated with a high positive fluid balance. Obviously the non-uniformity of patient management in response to hemodynamic data obtained from PAC both within and between institutions may have caused great impact on outcome. This confusion has led to the performance of a few large randomized trials which were aimed at elucidating the effect of the PAC on patient outcome. To date none of these studies have shown that the PAC has any beneficial effect on outcome. The conclusion of all this is that even with improved training in the insertion, interpretation, and implementation of the PAC and the data it generates, the PAC has inherent limitations as an advanced hemodynamic monitoring tool. This is why, as an alternative to expensive clinical trials on the PAC, it was proposed that our limited financial resources for clinical investigation be invested in the development of innovative techniques that may replace the PAC. These techniques are already out there, each trying to prove its superiority over the others. This of course is a very natural and very necessary process. Nevertheless, what is needed more is the realization that advanced hemodynamic monitoring should be further explored rather than completely abandoned. Admittedly, it is difficult to use published data as a basis from which to draw meaningful conclusions about the effects of any monitoring technique on outcome. However, these techniques provide us with a road map which, although incomplete by nature, may be more helpful than having no map at all, provided that one is aware of its pitfalls and limitations. The same logic is being employed whenever any physiological parameter is being measured. The ultimate study that will tell us, once and for all, how to best monitor hemodynamic status at any circumstance, at any time, is not out yet, and may never be. In the meantime we can either do nothing, or further explore the available technologies as well as our understanding of the pathophysiological processes that occur in the critically ill.

Volume or catecholamines? The „Hemodynamic triangle“ gives the answer
Acute lung injury post trauma

Greg Martin, MD, Assistant Professor
Director of Medical and Coronary Intensive Care Units,
Emory University School of Medicine, Grady Memorial Hospital,
Atlanta, Georgia, USA

Situation:
• 34 year old male passenger in motor vehicle accident with pelvic and femur fractures
• Hemorrhagic shock upon arrival in the emergency department, requiring fluid and blood product resuscitation
• Taken to theatre for pelvic stabilization
• Post-operative day 2 developed worsening hypoxemia consistent with Acute Lung Injury (ALI): chest X-ray showed bilateral pulmonary infiltrates and poor oxygenation ratio of 211 (PaO₂/FiO₂ ratio)

A PiCCO was inserted showing the following parameters:
• Mean Arterial Pressure (MAP) 87 mmHg
• Global End-diastolic Volume Index GEDI 800 ml/m² (normal: 680 – 800 ml/m²)
• Cardiac Index CI 4.8 l/min/m²
• Stroke Volume Variation SVV 21 % (normal: ≤ 10 %)
• Extravascular Lung Water Index ELWI 19 ml/kg (normal: 3 – 7 ml/kg)
• Central Venous Pressure CVP 13 mm Hg

Therapeutic Problems:
Traumatically injured patient with pulmonary edema, high ELWI and GEDI after resuscitation. Acute Lung Injury (ALI) requiring conservative fluid management and active diuresis, as tolerated.

Further Therapeutic Interventions:
• Patient managed with pressure-limited low tidal volume ventilation to protect lungs against further injury
• Monitoring of GEDI and CI against the ELWI and PaO₂/FiO₂ permitting successful fluid management with active diuresis
• After 96 hours of ventilator support, nutrition and diuretic-based therapy, PaO₂/FiO₂ ratio increased to 345 on FiO₂ 0.40 indicating resolution of ALI

Further Progress:
• Patient underwent operative fixation of femoral neck fracture
• He began spontaneous breathing trials on post-operative day 1

Comments:
Clinical management after acute fluid resuscitation and development of ALI can be successfully guided by the PiCCO parameters. Simultaneous monitoring of GEDI and ELWI allows fluid restriction (reduction of pulmonary edema) whilst avoiding organ hypoperfusion (maintenance of preload).
Clinical Measurement of Extravascular Lung Water: Its time has come

Charles Philips, MD, Assistant Professor
Director of Center for Intensive Care Research OHSU,
Oregon Health and Science University
Portland, Oregon, USA

Introduction
Increased extravascular lung water is an important cause of acute respiratory failure in the critically ill. The amount of extravascular lung water (ELWI) in the lung results as a balance of factors that cause pulmonary edema formation and those that cause edema clearance from the distal airways and interstitium. Inflammatory and coagulation processes in acute lung injury (ALI) increase the microvascular permeability while causing a decrease in alveolar fluid clearance, resulting in a net accumulation of protein rich pulmonary edema fluid in the interstitium and distal airways [1]. In patients with acute exacerbations of chronic left heart failure or with acute myocardial infarction, hydrostatic pulmonary edema frequently develops leading to hypoxemia and decreases in lung compliance and ultimately to respiratory failure. Resolution of edema from the alveolar space predicts outcome and is essential for survival in ALI [2] In fact there is a growing body of evidence to suggest that a strategy to limit or reduce the amount of extravascular lung water (ELWI) from all causes improves outcome [3-8].

Measuring ELWI – The How and the Why
Pulmonary edema can be detected on physical examine by the presence of rales and confirmed roughly through chest radiography. But clinical examination, chest radiography and blood gases, either alone or together, have proven to be relatively poor indicators of the amount of lung edema or in changes in edema with treatment, of various etiologies [9]. The direct measurement of ELWI has been shown to be more sensitive than any non-invasive indirect method [10].

The ability to directly measure ELWI at the bedside has been available for over 25 years now. Lewis and colleagues developed the first bedside method in 1982 using the thermal-green dye method [11]. Subsequent advances by PULSION Medical Systems perfected the single thermal indicator technique employed today – representing a significant advance in reliability and ease of use. The PiCCO® catheter system uses a single thermal indicator technique to determine ELWI, CO, and volumetric parameters. CO is calculated using the modified Stewart–Hamilton equation for thermodilution, with accuracy comparable with that of pulmonary artery thermodilution. Cold water injectate is introduced into a central vein and detected in the distal aorta. The volume of distribution of the thermal indicator represents the intrathoracic thermal volume (ITTV), where ITTV (ml) = CO × mean transit time (MTt) of the thermal indicator. The pulmonary thermal volume (PTV) is given by PTV (ml) = CO × down slope time (DST), where DST is the exponential decay time of the thermodilution curve. Global end-diastolic volume (GEDV) is given by ITTV – PTV (ml). This permits calculation of intrathoracic blood volume (ITBV): ITBV = 1.25 × GEDV – 28.4 (ml). ELWI is the difference between the thermal indicator distribution in the chest (ITTV) and the blood volume of the chest (ITBV): ELWI = ITTV – ITBV (ml).

Concern has been expressed that the thermal dilution method would lose accuracy in patients with high deadspace fractions and areas of lung with poor perfusion. This is an especially important consideration in patients with ALI where deadspace fractions can be as high as 60-70%. But the accuracy of this method has been validated by comparison with the "gold standard" postmortem gravimetric technique, and with the double dilution (thermo-dye) technique in animals and humans in a variety of disease states [12-14]. Moreover it has been shown to have a sensitivity that allows detection of clinically relevant changes in ELWI in animal models of severe ALI and congestive heart failure [15]. Furthermore ELWI measured in this way has been shown in several studies to reliably predict disease severity and outcome in sepsis and sepsis associated with ALI. In fact it has been shown to be the best pulmonary specific predictor for mortality we have available – even in patients with high dead space fractions.

Eisenberg et al and Mitchell et al, in two separate studies, first demonstrated that when fluid and hemodynamic management is guided by measured ELWI as opposed to central pressures and usual care, out-
come is significantly improved. ELWI fell to a greater extent in patients with ALI and in patients with heart failure and the duration of time spent on the ventilator and in the ICU was less in both studies [3,8]. Eisenberg showed that mortality was improved in patients with higher initial ELWI and ALI (p<0.05). Mitchell’s study was not powered to examine mortality but there was a strong albeit statically non-significant trend to improved mortality. And there is new evidence from the ARDSNet group at the recent conclusion of a large multi centered fluid and catheter treatment trial (FACTT), showing that an aggressive approach to diuresis and fluid management in patients with established ALI/ARDS not in shock improves outcome. Such a strategy has been shown to increase the number of ventilator-free days in patients with lung injury with no increase in the rates of shock or renal failure [17]. Referring back to the striking results of Eisenberg’s and Mitchell’s studies would not even more benefit have been possible in FACTTT had ELWI been measured and targeted directly? This is an even more relevant question today since from work since the early 1980’s we now know we can significantly manipulate measured ELWI with diuresis, diuresis and albumin, and in ALI - continuous intravenous infusion of β-agonists (albuterol) [6,16].

Conclusions:
Taken as a whole these studies provide strong evidence to support the direct measurement of ELWI in patients in whom a clinical suspicion of pulmonary edema exists, or in those felt to be at risk to develop it and that treatment strategy be specifically designed around attempting to lower elevated ELWI to normal goals. Twenty years have now passed since Eisenberg and Mitchell first tried to show us the way in managing patients with pulmonary edema – directing therapy to measured lung water. The time for more widespread adaptation of fluid and hemodynamic treatment strategies designed around measured ELWI is now. Let’s not let another twenty years pass.

Measurement of extravascular lung water at the bedside: Why and how?

Mikhail Kirov MD, PhD, Professor
Department of Anesthesiology and Intensive Care Medicine,
Northern State Medical University
Arkhangelsk, Russian Federation

Why do we measure Extravascular Lung Water?
Many critical conditions lead to pulmonary edema. During systemic inflammation and sepsis, acute lung injury (ALI), burns, pancreatitis, multiple trauma with severe blood loss, ischemia-reperfusion injury and other states, the release of inflammatory mediators may enhance pulmonary microvascular pressure and permeability, thus promoting the accumulation of fluid in the lungs. In contrast to hyperpermeability states, during cardiac failure the main mechanism for edema includes increased hydrostatic pressure in the pulmonary circulation. However, both cardiogenic and non-cardiogenic origins of pulmonary edema have one common sign—increased extravascular lung water (ELWI). Moreover, both types of lung edema are accompanied by a high mortality rate that necessitates a search for strategies that will improve our therapy. Consequently, reliable tools for monitoring lung fluid balance are increasingly needed in modern intensive care.

The amount of edema is, however, difficult to estimate at the bedside. Clinical examination, chest radiography, and blood gases have proven to be of limited significance in quantifying pulmonary edema. Therefore, several techniques have been developed to assess ELWI. Among them, single transpulmonary thermodilution today is used most frequently.

How can we determine Extravascular Lung Water?
Originally, the thermo-dye dilution (TDD) was used for measuring lung water. This technique is based on the simultaneous detection of two indicators with different properties: a freely diffusible indicator (“cold”) and a dye (indocyanine green), which binds to the plasma albumin. Based on the Stewart-Hamilton principle, “cold” and dye allow the calculation of the intrathoracic thermal volume (ITTV) and the intrathoracic blood volume (ITBV), respectively. The difference between the two distribution volumes is used for estimation of ELWI (ELWI = ITTV – ITBV). The TDD method has been validated in animal models of lung edema and in the clinical setting. However, TDD is relatively time consuming, cumbersome and expensive, thus motivating the search for a reasonable bedside alternative.

Employing the PICCO technique based on the injection of a single thermo-indicator that can be detected with an indwelling arterial thermodilution catheter, is an appealing idea. ELWI determined by single thermodilution (STD) can be calculated using the specific analysis of the thermodilution curve.

In addition to ELWI, STD combined with pulse contour analysis of cardiac output also gives the possibility of displaying a variety of cardiopulmonary variables, thus expanding the options for hemodynamic monitoring.

Recent experimental and clinical studies have shown that ELWI assessed by STD demonstrates good reproducibility and close agreement with the double indicator technique and postmortem gravimetry. Compared with both TDD and right heart catheterization, STD is simpler to apply, less invasive and more cost-effective, all factors that make it more suitable for use at the bedside. However, the detection of ELWI by the thermodilution method can be impaired by several factors, for example, severe changes in cardiac output and pulmonary blood volume and positive end-expiratory pressure (PEEP). Therefore, determination of ELWI by TDD and STD requires repeated measurements.

What do we measure Extravascular Lung Water for?
Several categories of both pediatric and adults intensive care patients have been shown to benefit from monitoring ELWI, including any patient who has cardiogenic and non-cardiogenic pulmonary edema, massive fluid shifts and severe changes in microvascular permeability. Thus, I consider any critical illness that results in shock and tissue hypoperfusion refractory to fluid resuscitation is a valid subject for ELWI monitoring. In addition, ELWI monitoring may also be of value in patients undergoing major surgical procedures, particularly cardiothoracic surgery and organ transplantation.

In septic shock, invasive cardiovascular monitoring with arterial catheterization and “beat-to-beat”
Cardiac Output

Volume or catecholamines?

Volume or catecholamines?

Cardiac Output

Volume or catecholamines?
Case studies

„Failure to thrive“ post abdominal laparotomy for gall stone ileus

Professor David Bihari, MD
Department Intensive Care Unit
Lismore Base Hospital, Lismore
New South Wales 2480, Australia

Patient Diagnosis:
Pulmonary aspiration and acute respiratory distress syndrome following an abdominal laparotomy for gallstone ileus.

Medical History:
An 85 year woman was admitted to the ICU following an abdominal laparotomy for the treatment of a gall stone ileus. A limited small bowel resection was performed and the patient was extubated after 48 hours. Over a period of 72 hours, she “failed to thrive” complaining of abdominal pain and distension. Abdominal examination revealed some rebound tenderness and the absence of bowel sounds. TPN was initiated on the 3rd post operative day and she required CPAP for respiratory support. On the 4th day, the intra-abdominal pressure was measured at 18 mmHg (bladder catheter technique using 100 ml 0.9% saline) and the patient had an abdominal CT scan with contrast that suggested the presence of a post-operative ileus. On her return from the CT scanner, the patient vomited and became very short of breath suggesting pulmonary aspiration. She required emergency intubation and gastric contents were aspirated of breath suggesting pulmonary aspiration. She required intropic and vasopressor support could be reduced over the next five days as oxygenation improved. The patient was successfully extubated on day 8.

Summary:
Advanced hemodynamic monitoring with the PiCCO allowed the attending physicians to manipulate fluid therapy, inotropes/vasopressors and diuresis in such a way as to improve hemodynamics and pulmonary gas exchange. Excessive fluid therapy was avoided and active measures were taken to maintain colloid osmotic pressure and to obtain negative fluid balance.

Table 1: PiCCO Measurements

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Day 0</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 4</th>
<th>Day 5</th>
<th>Day 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVP</td>
<td>15</td>
<td>14</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>GEDI</td>
<td>880</td>
<td>680</td>
<td>810</td>
<td>825</td>
<td>830</td>
<td>790</td>
</tr>
<tr>
<td>SVV</td>
<td>8</td>
<td>12</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>CI</td>
<td>1.8</td>
<td>2.7</td>
<td>3</td>
<td>3.5</td>
<td>3.3</td>
<td>3.1</td>
</tr>
<tr>
<td>ELWI</td>
<td>18</td>
<td>18</td>
<td>14</td>
<td>12</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>PaO₂:FiO₂</td>
<td>95</td>
<td>125</td>
<td>210</td>
<td>270</td>
<td>295</td>
<td>330</td>
</tr>
<tr>
<td>PEEP</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>10</td>
</tr>
</tbody>
</table>
| CVP Central Venous Pressure; GEDI Global End Diastolic Volume Index; SVV Stroke Volume Variation; CI Cardiac Index; ELWI Extra Vascular Lung Water Index; PaO₂:FiO₂ Partial Pressure Oxygen divided by Fraction of Inspired Oxygen; PEEP Positive End Expiratory Pressure
Medical History
A 28 year old man suffering multiple trauma after an accidental fall from approximately 10 meters.
Injuries included:
- Complex facial fractures
- Open fractures of left humerus and left tibia
- Closed fracture of right femur
- Transverse fracture of sacrum
- Absence of pulse in left arm

On arriving to our Trauma Centre Emergency Room (35 min after the accident) the patient was alert, conscious and breathing spontaneously O_2. Arterial oxygen saturation was 96% with an oxygen mask. The hemodynamic status was volume dependent and the patient was intubated and connected to a mechanical ventilator. Arterial blood gas analysis on mechanical ventilation with FiO_2 0.4 and zero-PEEP: PaO_2 175, $PaCO_2$ 33, pH 7.29, Base deficit -6.5, lactate 2.3 mmol/l and hemoglobin 9.8 g/dl. After radiological and sonographic explorations to rule out internal injuries the patient was transferred to OR (approximately 30 minutes after admittance) for external fixation of the long bone fractures and vascular repair of left axilla artery.

First 24 hours
The principal problems early after OR were:
1. Extreme hemodynamic instability requiring massive, volume replacement (positive balance of 12 litres in the first 12 hrs) and vasoactive support with noradrenalin in increasing doses (from 0.35 to 2.7 $µg/kg/min$).
2. Coagulopathy requiring replacement of hemo-derivates:
 - Plasma 1500 ml, Red Blood Cells 2000 ml, platelets 12 units.
 After 12 hrs the hemodynamic picture remained unstable with noradrenalin at 1.5 $µg/kg/min$ (BP: 120/70 mmHg, CVP 5-7 mmHg, urine output 1.5 ml/kg/h, heart rate 120 beat/min and a positive fluid balance of 2 liters in the last 12 hrs. The patient became febrile (38.5 °C) and developed a generalized skin erythema. Blood cultures were taken. Periph-eral edema was apparent. Severe Systemic Inflammatory Response was considered as responsible for the hemodynamic situation. Chest radiograph was normal and the patient showed excellent oxygenation on mechanical ventilation with FiO_2 0.4 and 6 cmH2O of PEEP (PaO_2 166, $PaCO_2$ 27, pH 7.37, Base deficits -4, Lactate 1.6 mmol/L).

Fluid therapy for the next days
Based on a relatively low CVP in a patient with high vaso-pressure support and normal lung function, fluid therapy for the next 24 hours was planned to maintain the fluid infusion as necessary and to maintain the noradrenalin infusion or, if possible to reduce it. A PICCO catheter was inserted which provided the following data: Cardiac Index (CI): 4.7 l/min/m², Global End-Diastolic Volume Index (GEDVI): 630 ml/m², Extravascular Lung Water Index (ELWI): 13 ml/kg and Stroke Volume Variation (SVV): 17%.
As SVV is only applicable in patients receiving fully controlled mechanical ventilation, so we did not use this parameter. As the GEDV was in the low range of normal this indicated that the patient could tolerate more fluids. However, by contrast, the high ELWI of 13 ml/kg (normal <7 ml/kg) indicated that even with normal lung function, the patient had “incipient pulmonary edema”, probably due to the high permeability situation, indicating the need to infact reduce fluid intake. Therefore we reduced fluid intake and added bolus doses of fursemide.

Evolution
Following this plan a moderate but sustained negative fluid balance (300 – 1400 ml/day) was obtained in the following 5 days with close monitoring of continuous cardiac index. ELWI dramatically decreased to 6ml/kg (see figure). On day 8, following a 5 hour operation (maxillofacial surgery and intra medullar femur osteosynthesis), the patient received a positive fluid balance of 2500 ml and the ELWI increased to 12 ml/kg. This reduced slowly over time. The patient was extubated day 11, the PICCO catheter was removed on day 12 and four days later, the patient was discharged to the normal ward.

Summary
1. Although this patient’s oxygenation and chest radiograph were completely normal, the lungs were moderately edematous (ELWI 13 ml/kg, normal <7 ml/kg). This is of no surprise as it is known that both oxygenation and chest radiograph are not sensitive when detecting incipient pulmonary edema.
2. The optimum approach to fluid therapy is based on adequate interpretation of several physiologic parameters. ELWI gives unique and crucial information about lung fluid accumulation that can not be obtained in any other way.
3. Including ELWI monitoring in the fluid therapy decision tree allow us to take the right decisions according to the pathophysiological patient situation.

Incipient pulmonary edema in systemic inflammatory response after multiple trauma

Professor Enrique Fernandez Mondéjar, MD, Associate Professor
Intensive Care Unit,
Hospital Universitario Virgen de las Nieves
Granada, Spain

Simultaneous monitoring of lung water and preload allows reduction of pulmonary edema while maintaining preload and cardiac output.
Case studies

Postoperative volume management after total hip replacement

Azriel Perel, MD,
Professor and Chairman
Department of Anesthesiology and Intensive Care
Sheba Medical Center, Tel Aviv University
Tel Hashomer, Israel

Situation:
• 63 year old patient undergoing total hip replacement
• uneventful course of anaesthesia
• stable hemodynamics intraoperatively; after 4h surgery clinical signs of pulmonary edema with oxygen saturation (SaO2) dropping below 80%
• recovery room: blood pressure 63/40mmHg, heart rate 137 bpm
• stabilization of blood pressure with dobutamine and epinephrine
• blood gas analysis (ventilation with 100% oxygen): pH 7.23 (norm 7.35-7.45), pCO2 42mmHg (norm 35-46), pO2 75mmHg (norm 70-104), Hct. 37% (norm 40-52%)

Possible diagnoses:
• acute myocardial infarction with cardiac decompensation (cardiogenic shock)
• hypovolemia (hypovolemic shock)
• reaction to transfusion (anaphylactic shock)
• reaction to bone cement (anaphylactic shock)
• pulmonary embolism

Hemodynamic stabilization:
• installation of PICCO-system: CI 1.91, GEDI 623, ELWI 23, SVV 22%
• despite the high lung water, volume loading started because of low GEDI and high SVV

• reduction of catecholamine dosage with volume therapy
• TEE showed a hyperdynamic left ventricle with small enddiastolic volume

Further course:
• further decrease and eventually cessation of catecholamines
• fluid withdrawal after hemodynamic stabilization
• extubation on 2nd postoperative day with normal ELWI
• at the time of extubation there were still radiologic signs of significant pulmonary edema
• extubation was nevertheless successful

Conclusion:
• detection of hypovolemia by means of PICCO (low preload volume, high volume responsiveness) as the cause of hemodynamic instability.
• recognition and subsequent monitoring of pulmonary fluid accumulation.
• goal-oriented fluid- and catecholamine therapy with PICCO: initial volume loading, and then volume withdrawal after circulatory stabilization.
• despite persisting radiologic signs of pulmonary edema the low ELWI showed an acceptable pulmonary water content allowing a successful extubation (Lung Water as a weaning parameter).

<table>
<thead>
<tr>
<th>Course of PICCO-Parameters for Volume Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI in l/min</td>
</tr>
<tr>
<td>3.5</td>
</tr>
<tr>
<td>3,5</td>
</tr>
<tr>
<td>2,9</td>
</tr>
<tr>
<td>1.9</td>
</tr>
<tr>
<td>1,9</td>
</tr>
<tr>
<td>623</td>
</tr>
<tr>
<td>3,8</td>
</tr>
<tr>
<td>volume withdrawal</td>
</tr>
<tr>
<td>volume loading</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>ELWI in ml/kg BW</th>
<th>GEDI (x1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1,9</td>
</tr>
<tr>
<td>20</td>
<td>1,9</td>
</tr>
<tr>
<td>15</td>
<td>1,9</td>
</tr>
<tr>
<td>10</td>
<td>1,9</td>
</tr>
<tr>
<td>5</td>
<td>1,9</td>
</tr>
</tbody>
</table>

4

-1
0
-0,5
5
10
5-10
post surgery
after volume
1. postop day
2. postop day
Admission to ICU for loss of consciousness

Jean-Louis Teboul, MD, Professor
Service de Réanimation médicale,
Centre Hospitalier Universitaire de Bicêtre
Paris, France

Situation:
- 39 year old woman presented to the emergency department following coma related to benzodiazepine and antidepressant self poisoning
- Previous psychological disorder for which she was treated with antidepressants and benzodiazepines
- Intubated and mechanically ventilated then transferred to ICU
- On admission laboratory results normal with exception of Lactate 1.6 mmol/L, White Blood Cells (WBC) 24.8 \(10^9\)/L, Creatinine 120 µmol/L, CK 13400 IU, CRP 382 mg/dL

Therapeutic problems:
Aspiration pneumonia and moderate renal failure, with staph aureus found in tracheal secretions. Treated with fluids (saline), antibiotics and continued on mechanical ventilation.

Ongoing problems:
Day 3 patient developed ARDS (Acute Respiratory Distress Syndrome) P/F ratio decreased from 280 to 120.

Further problems:
- Day 7 sudden development of severe acute circulatory shock - blood pressure 42/20 mmHg, tachycardia 130 bpm, oliguria and pyrexia 40 °C
- Grossly abnormal arterial blood gases (pH 6.89, lactate 24 mmol/L), WBC 79.3 \(10^9\)/L, Creatinine 169 µmol/L, potassium 6.3 mmol/L, CK 1157 IU, CRP 394 mg/L
- X-ray, abdominal echo, transthoracic echo – all normal
- Patient given 2 liters normal saline and commenced on noradrenaline.
- PICCO was inserted showing the following:
 - Cardiac Index: 3.85 l/min/m²
 - Stroke Volume Variation (SVV) 21 % (normal: ≤ 10 %)
 - Stroke Volume Index: 31 ml/m² (normal: 40-60 ml/m²)
 - Global End-Diastolic Volume Index (GEDI): 630 ml/m² (normal: 680-800 ml/m²)
 - Extra-Vascular Lung Water Index (ELWI): 29 ml/kg (normal: 3 – 7 ml/kg)
 - Heart Rate: 125 beats/min
 - Arterial pressure: 80 / 35 mmHg
In the light of the very high Lung Water (ELWI) and despite the low preload (GEDI) and high stroke volume variation, the noradrenaline was increased to 8 µg/kg/min by hour 10 to achieve a MAP > 65 mmHg. Continuous veno-venous hemofiltration was started on hour 6. Activated Protein C was started at hour 10. Finally the antibiotics were changed.
Following noradrenaline increase PiCCO parameters were:
- Cardiac Index: 4.42 l/min/m², SVV: 13 %
- Stroke Volume Index: 37 ml/m², GEDI 700 ml/m²
- ELWI 24 ml/kg, HR: 120 beats/min
- Arterial pressure: 100/50 mmHg

Further Therapeutic Interventions:
From hour 18 the hemodynamic condition improved dramatically resulting in progressive reduction in the dose of noradrenaline, which was stopped at hour 36. At that time, blood lactate level returned to a normal value.
At hour 24, continuous hemofiltration was replaced by intermittent hemodialysis for the following two weeks until recovery of renal function. The patient also experienced an episode of nosocomial pneumonia on day 12.

Further Progress:
Patient was extubated on day 19 and was discharged to the ward on day 26 with normal renal function and normal chest X-ray.

Comments:
Despite the obvious need for fluid therapy (low preload – GEDI 630 and high value of SVV) during the development of acute severe circulatory shock, the patient was treated with noradrenaline to support her blood pressure because the priority was to avoid worsening the pulmonary edema (ELWI 29). In this case the knowledge of the very high ELWI allowed a more complete cardiopulmonary picture which provided the treating physicians with beneficial tools to make the right therapeutic decision.
Why filling pressures alone are not enough - Patient with acute respiratory failure and abdominal compartment syndrome

Manu Malbrain, MD
Director Medical ICU
ACZA Campus, Stuivenberg
Antwerp, Belgium

Patient History:
A 55 year old man with a previous history of acute myeloid leukemia was admitted to the ICU because of acute respiratory failure. He had gained 7kg in weight the previous week on the ward where he was diagnosed as having a gastro-enteritis related to the chemotherapy (cytosar). His central venous pressure measured on the ward was 32cm H\textsubscript{2}O. The tentative diagnosis hence was acute lung edema and a bolus of 40 mg fursemide was administered.

Clinical Course:
On admission to ICU he was in distress with a respiratory rate of 34 breaths per minute. Further examination of his vital signs showed a core temperature of 34.4\textdegree C, a MAP of 59 mmHg and a sinus tachycardia of 140 beats per minute. Because of clinical exhaustion, he was intubated and mechanically ventilated (machine rate 24 x 500ml, inspiration: expiration ratio 1:1 and a PEEP of 15) however oxygenation was poor with a pO\textsubscript{2}/FiO\textsubscript{2} ratio of 115. Breaths sounds were diminished and fine crackles were heard over both lungs. The abdomen was tender, firm and distended with an intra-abdominal pressure of 26 mmHg. Neurological and extremities examination were unremarkable, however, the patient was oliguric. A PiCCO catheter was inserted and confirmed the diagnosis of septic shock with a cardiac index of 5.1 l/min/m2 (normal range 3.0-5.0) and low SVRI. The CVP was 24 mmHg with a SVV of 15% and a GEDI of 650 ml/m2, confirming intravascular under-filling and fluid responsiveness, despite the high CVP. Blood cultures grew enterococcus faecalis and clostridium difficile toxins were positive on a recent stool sample. The patient's MAP was initially responsive to fluids together with doses of noradrenaline up to 1 mcg/kg/min and dobutamine up to 15 mcg/kg/min, however he soon became anuric and the cumulative fluid balance was positive for another 12 l. Due to ongoing fluid resuscitation and profound capillary leak his pO\textsubscript{2}/FiO\textsubscript{2} ratio further deteriorated to 75. At that time CVP was 29 mmHg, MAP 65 mmHg, SVV 13%, GEDI 780 ml/m2, IAP 28 mmHg, but ELWI increased from 12 initially to 17 ml/kg.

Subsequently:
The patient was diagnosed having an abdominal compartment syndrome with abdominal sepsis related to the toxic megacolon following diffuse clostridium difficile pseudomembraneous colitis. On abdominal CT the caecum diameter was 18cm with wall thickening up to 3.5cm, the whole colon was infiltrated and dilated. Therefore the option was taken to perform a total colectomy and decompressive laparotomy with temporary abdominal vacuum assisted fascial closure. After decompression despite the good CI and SVV parameters the patient was put on CVVH with aggressive ultra-filtration combined with albumin substitution because of the high ELWI and low pO\textsubscript{2}/FiO\textsubscript{2} ratio. Over the following days his condition improved with a decrease in IAP to 16 mmHg and ELWI to 13 ml/kg and a concomitant rise in pO\textsubscript{2}/FiO\textsubscript{2} ratio to 175. The CVP remained stable at 18 to 22 mmHg while SVV normalized at 10-13%.

Summary:
- Traditional filling pressures are erroneously increased in incidences of high intra-thoracic pressures (related to IAP or PEEP). In this situation volumes are better preload indicators.
- SVV is NOT an indicator of preload but a marker of fluid responsiveness (in fully ventilated patients).
- Measurement of flow (CI) does not allow you to discriminate between over- or under filling.
- After the initial resuscitation phase an even more important question that needs to be answered is: “when to stop filling?”
- ELWI can guide you to get rid of the excess fluids.

Relation of preload and stroke volume in different fluid loading conditions
Hemodynamic management of a patient with pneumonia

Greg Martin, MD, Assistant Professor
Director of Medical and Coronary Intensive Care Units,
Emory University School of Medicine, Grady Memorial Hospital,
Atlanta, Georgia, USA

Situation

- 66 year old male patient with pneumonia
- Difficult to oxygenate with \(\text{PaO}_2/\text{FiO}_2 \) ratio 128 on Positive End Expiratory Pressure (PEEP) of 18 cmH2O
- A PICCO was inserted showing the following parameters:
 - Mean Arterial Pressure (MAP) 58 mm Hg
 - Global End-diastolic Volume Index GEDI 560 ml/m2 (normal: 680 – 800 ml/m2)
 - Cardiac Index CI 3.8 l/min/m2
 - Stroke Volume Variation SVV 21% (normal: ≤ 10%)
 - Extravascular Lung Water Index ELWI 16 ml/kg (normal: 3 – 7 ml/kg)
 - Central Venous Pressure CVP 12 mm Hg

Therapeutic Problems:

Patient with severe sepsis due to pneumonia, low MAP with elevated SVV, inappropriate CI (sepsis!), Acute Lung Injury (ALI) with increased ELWI.

Further Therapeutic Interventions:

- Patient managed with pressure-limited low tidal volume ventilation to protect lungs against further injury
- Fluid resuscitated to target GEDI, increased CI, lower SVV
- Patient remained hypotensive (MAP< 60, SVV 14%, ELWI 19), so vasopressors (norepinephrine) started for blood pressure support
- ScvO2 measured at 58% → early goal-directed therapy used to normalize ScvO2 at > 70% (normal: 70% - 80%)
- \(\text{PaO}_2/\text{FiO}_2 \) decreased further to 110

Further Progress:

- Septic shock eventually resolved with antibiotics
- Invasiveness of mechanical ventilation decreased, \(\text{PaO}_2/\text{FiO}_2 \) increased and ELWI decreased to 7 ml/kg

Summary

- Patient required mechanical ventilation for 16 days
- After extubation, patient transferred to rehabilitation facility before going home

Comments

- PICCO parameters GEDI and SVV – in contrast to the CVP of 12 mmHg - indicated and guided fluid resuscitation to improve hemodynamics.
- ScvO2 tracked the effectiveness of the therapy by showing an increase to the normal range.
Hemodynamic stabilization of a burn patient

Daniel Wyder, MD
Surgical Intensive Care Medicine
University hospital Zurich
Zurich, Switzerland

Situation:
- 36 year old patient with 20% burns of face and upper body (3% 3rd degree, 17% 2nd degree)
- Patient was admitted intubated, hypothermic but hemodynamically stable to Burns ICU
- Gas exchange adequate with FiO\textsubscript{2} 65, PEEP 10 cmH\textsubscript{2}O
- Bronchoscopy showed inhalation trauma
- Laboratory parameters consistent with rhabdomyolysis
- Need for comprehensive monitoring due to complexity of case

Hemodynamic Stabilization:
- PiCCO monitoring installed; low CI 3.0, very low GEDI 520, and high-normal ELWI 7 and SVRI 2500 indicating patient was hypovolemic with a capillary leak syndrome, typical in burns patients
- Guided by further thermodilution measurements, patient was given in total 18 liters of crystalloids over first 24 hours, allowing sufficient diuresis with decrease in rhabdomyolysis parameters
- Despite the high need for fluid, pulmonary function improved and the patient was able to breathe spontaneously (FiO\textsubscript{2} .4, CI 3.8, GEDI 600, ELWI 8, SVRI 1500)
- Capillary leak syndrome continued causing ongoing need for volume (CI 5.0, GEDI 480, ELWI 9, SVRI 750)
- Under continued fluid therapy there was a slight decrease in gas exchange and increase in lung water, but normalization of the GEDI was possible with careful fluid loading
- Once preload was normalized, a reduction in volume administration was possible
- On day 5 patient became hemodynamically unstable (CI 7.9, GEDI 760, ELWI 13, SVRI 560, with pulmonary deterioration requiring FiO\textsubscript{2} 1.0 with IRV (inverse ratio ventilation)
- General picture of a fulminant SIRS / sepsis reaction, noradrenaline commenced. Diagnosed with sepsis (streptococcal cultures found in tracheal secretions and enterococcus in wound swabs)
- Further requirement for fluid boluses, catecholamines and antibiotics resulted in a slow recovery
- After 9 days a negative fluid balance was possible, with cessation of catecholamines from day 12. Throughout this PiCCO parameters (CI, GEDI, ELWI and SVRI) remained within the normal range
- Following completion of a course of operative wound management, patient discharged to rehabilitation

Summary
- Volume status is difficult to predict in burn patients due to large fluid shifts
- In this case the hypovolemic episodes were reliably detected by the PiCCO
- ELWI is a helpful parameter in the evaluation of pulmonary permeability in burns, showing good correlation with the pulmonary function
- Because of the rapid initiation of appropriate volume management, renal failure (rhabdomyolysis) was avoided
Resuscitation post Lung Embolism

Silke van Hülst, MD
Department for Anesthesiology and Surgical Intensive Care Medicine
Westküstenklinikum Heide
Heide, Germany

Situation
• 58 year old patient with history of vertebral disc operation
• On 1 day postop patient had a cardiac arrest during mobilization
• Successfully resuscitated, suspected to have fulminant pulmonary embolism, admitted to the Intensive Care Unit
• Echocardiography confirmed right heart dysfunction
• Started on thrombolysis therapy, hemodynamic stabilization with high dose catecholamines
• Development of anuric renal failure

Hemodynamic Stabilization
Installation of the PiCCO-Technology in order to accurately assess the cardiac pump function and to differentiate between need for volume and need for catecholamine treatment:
First results CI 5.87, GEDI 698, ELWI 5.
• Also had CeVOX-Technology* installed for the continuous measurement of the central venous oxygen saturation (ScvO2) 63% (normal range 70% - 80%)
• Rapidly began to display early characteristics of a developing SIRS with significant capillary leak (CI 4.78, GEDI 578, ELWI 5).
• Stabilization of Mean Arterial Pressure >80 mmHg possible with adrenaline and noradrenaline, and ScvO2 reached >70%

Summary:
• Reduction of adrenaline possible on day 3.
• With PiCCO monitoring stabilization of GEDI and ELWI to within normal range (CI 7.2, GEDI 696, ELWI 5).
• On day 3 development of a significant pulmonary dysfunction with clear requirement for high PEEP (18 mbar) and FiO₂ (0.8)
• Because ELWI remained at 5, a CT-scan of the thorax was done showing marked ventilation disturbances in the dorsal basal regions
• Simultaneously, a cranial CT-scan showed multiple central bleeding spots in the brain tissue and generalized brain edema, probably resulting from the thrombolysis therapy
• Patient died on day 4 from cardiac failure

Summary:
• Help in distinguishing between need for volume or catecholamine therapies possible by monitoring with the PiCCO and CeVOX-Technologies*
• The ELWI parameter allowed the exclusion of pulmonary edema as the reason for the pulmonary deterioration (confirmed by diagnosis of atelectasis in the thoracic CT)
Acute pancreatitis and myocardial insufficiency

Situation:
- 82 year old patient with one day history of acute pancreatitis, CT showed extensive exudate around the head of the pancreas
- Biliary source suspected, so patient admitted for ERCP
- Previous medical history: compensated cardiac insufficiency & renal insufficiency due to right nephrectomy, diabetes mellitus II, arterial hypertension, general atherosclerosis
- On day 1 of admission clinically under resuscitated as shown by breath dependent variations on the arterial pressure curve, CVP 12 mmHg however

Therapeutic Problems:
- Apparent need for further volume management in patient with pancreatitis and atherosclerosis
- Previous history of cardiac and renal insufficiency requiring extreme caution with any volume loading

Hemodynamic Stabilization:
- Installation of the PiCCO-System, CI 4.67, GEDI 833, ELWI 5, SVRI 870, CVP 12, SVV 28.7%
- Patient given 5 liters fluid
- PiCCO thermodilution measurement 7 hours later: CI 4.67, GEDI 834, ELWI 5, SVRI 598, CVP 12, SVV 33.8%
- Noradrenaline commenced and digitoxine was given for frequent tachy-arrhythmias
- PiCCO thermodilution measurement 16 hours later: CI 4.53, GEDI 778, ELWI 6, SVRI 1051, CVP 14, SVV 16.6%
- Following this, and because of cardiac decompensation with respiratory failure patient started on high dose diuretics and NIV-BIPAP (non-invasive ventilation)

Further Course:
- With the negative fluid balance and NIV the patient condition began to stabilize
- Resolution of the acute pancreatitis (aetiology presumed ischemic because of absence of gallstones in ERCP)
- Discharge to original hospital on day 9

Summary:
- Despite the volume therapy there was no increase in GEDI or ELWI, thereby pancreatitis responsible for large losses into the third space
- Noradrenaline was probably responsible for the decompensation in the cardio-respiratory function because of the increase in afterload
- Unfortunately no measurements are available once the patient began to recover
- SVV was not valid in this example as the patient was not receiving controlled ventilation and was having intermittent arrhythmias.
Multiple trauma

Andreas Weyland, MD, Professor
Department of Anesthesiology and Intensive Care Medicine
Städtische Kliniken Oldenburg
Oldenburg, Germany

Situation:
• 20 year old patient with multiple trauma including ruptured spleen, open fracture of lower leg, open fracture of lower jaw, craniocerebral injury (grade 2) as well as severe bilateral lung contusions and pneumothoraces and pneumomediastinum
• Patient had already undergone emergency laparotomy with development of severe oxygenation problems requiring invasive ventilation with FiO2 of 1.0
• Massive blood transfusion required for hemodynamic stabilization
• On admission to the ICU, very gradual improvement seen in the pulmonary situation (FiO2 7) with airway pressure release ventilation (APRV) and patient positioning

Hemodynamic Stabilization
• After installation of the PiCCO system, CI was high normal, GEDI normal with 720 after massive transfusion and ELWI elevated at 15
• As a result of the high ELWI with poor pulmonary function, aggressive diuresis started with fursemid, guided by the GEDI. After only a few hours ELWI decreased to 11, with a corresponding decrease in FiO2 to 4
• Further negative fluid balance possible with close attention paid to GEDI
• On day 4 post trauma ELWI had decreased to 8, with a corresponding improvement in the pulmonary function (FiO2 3), and increasing rate of spontaneous breathing
• Stable hemodynamically (CI 4.5) with low dose dobutamine therapy
• Patient condition continued to slowly improve with intensive care treatment, and still in ICU at time of writing

Summary:
• There was a direct correlation between pulmonary function, ELWI and need for mechanical ventilation
• By simultaneous monitoring of ELWI and GEDI, an effective reduction of pulmonary edema was possible while maintaining adequate preload and hemodynamic stability.

![Course of PiCCO-parameters](image-url)
Respiratory failure post aspiration

Tilmann von Spiegel
Clinic for Anesthesia and Intensive Care Medicine
University Clinic Bonn
Bonn, Germany

Situation
• 59 year old patient with previous history of liver cirrhosis Child A from Hepatitis C
• Portal hypertension with long standing esophageal varices
• Need for emergency laparotomy because of small bowel ileus (cause: perforated appendicitis)
• During anesthetic induction massive vomiting with aspiration
• Consequently difficult to ventilate intraoperatively
• On first day post op patient transferred to larger hospital for further management
• On admission to ICU marked respiratory insufficiency with \(\text{PaO}_2 \) 85 mmHg on \(\text{FiO}_2 \) 8, hypotension, with \(\text{SBP} \) 100 mmHg with dopamine and dobutamine infusions, \(\text{CVP} \) 12 mmHg, diuresis 0.5 ml/kg/h
• Radiological findings: basal delineation increase and central congestion
• Ventilation adjusted to inverse ratio BiPAP 24/14 mmHg
• Laboratory parameters showed a worsening liver function along with a ascitic picture, and high CVP of 20 cmH2O

Therapeutic Problems:
• Hemodynamic assessment indicating volume depletion
• X-ray showing pulmonary congestion, hence maybe volume restriction would be more appropriate?
• Deterioration of the liver function as the result of cardiac congestion or of volume depletion?

Further Therapeutic Interventions:
• Installation of the PiCCO system, CI 5.2, low SVR, therefore suggestive of a SIRS / sepsis reaction, GEDI 520, ELWI 8
• Given 5 liters fluid over 36 hours, later GEDI 680
• Low dose noradrenaline started
• With gradual volume loading no significant increase in ELWI
• Patient treated in different positions including prone, bronchoscopy for suction of secretions, antibiotic therapy

Further Progress:
• Improvement in pulmonary status over the following days
• Stabilization of the hemodynamic status with further volume administration, gradual cessation of noradrenaline infusion
• Normalization of the liver and renal function
• Extubation on day 10 post op

Summary
• Through the parameters provided by the PiCCO rapid detection of the volume depletion despite high CVP and radiology showing congestion
• Control of the volume loading by close monitoring of GEDI and simultaneously avoidance of any relevant increase in ELWI
• Through rapid hemodynamic stabilization prevention of any further deterioration in the liver and renal function.
1. **PiCCO-Technology - Top recommended literature**
 1.1 Cardiac output page 6-2
 1.2 Preload page 6-2
 1.3 Lung Water page 6-2
 1.4 Guidelines and Standard Operating Procedures page 6-3

2. **Reviews**
 2.1 General page 6-3
 2.2 Cardiac output page 6-3
 2.3 Preload page 6-3
 2.4 Lung Water page 6-4
 2.5 Pediatric page 6-4

3. **Guidelines and standard operating procedures** page 6-4

4a. **PiCCO Parameters – Methodology**
 4a.1 Flow (Cardiac Output) page 6-5
 4a.2 Preload (Global End Diastolic Volume) page 6-5
 4a.3 Contractility (Cardiac Function Index) page 6-5
 4a.4 Volume Responsiveness (Stroke Volume and Pulse Pressure Variation) page 6-6
 4a.5 Pulmonary Edema (Extravascular Lung Water) page 6-6

4b. **PiCCO Parameters – Validation**
 4b.1 Flow (Cardiac Output) page 6-7
 4b.2 Preload (Global End Diastolic Volume) page 6-7
 4b.3 Contractility (Cardiac Function Index) page 6-8
 4b.4 Volume Responsiveness (SVV and PPV) page 6-8
 4b.5 Pulmonary Edema (Extravascular Lung Water) page 6-8

5. **Fields of application**
 5.1 Septic Shock page 6-9
 5.2 Cardiogenic Shock page 6-9
 5.3 Hypovolemic Shock page 6-10
 5.4 ALI / ARDS page 6-10
 5.5 Trauma page 6-11
 5.6 Burns page 6-11
 5.7 Cardiac Surgery page 6-11
 5.8 Neurology / Neurosurgery page 6-12
 5.9 Transplantation page 6-13
 5.10 Pulmonary Edema page 6-13
 5.11 Surgical Intensive Care page 6-14
 5.12 Medical Intensive Care page 6-14
 5.13 Pediatrics page 6-15

6. **PiCCO Parameters in various clinical situations** page 6-16

7. **Catheters** page 6-17
1.1 Cardiac Output – Flow

Piehl MD, Manning JE, McCurdy SL, Rhue TS, Kocis KC, Cairns CB.
Pulse contour cardiac output analysis in a piglet model of severe hemorrhagic shock
Crit Care Med 2008; 36: 1189-95

With Editorial
Hanna BD. Childrens Hospital of Philadelphia.
Where do we go from here? Cardiac output determination in pediatrics.
Crit Care med 2008; 36: 1377-8

Felbinger TW, Reuter DA, Eltzschig HK, Bayerlein J, Goetz AE.
Cardiac index measurements during rapid preload changes: a comparison of pulmonary artery thermodilution with
arterial pulse contour analysis

1.2 Preload (Global End-Diastolic Volume)

Volumetric preload measurement by thermodilution: a comparison with transoesophageal echocardiography
Br J Anaesth 2005; 94(6):748-55

Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL.
Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock
Chest 2003; 124(5):1900-8

1.3 Lung Water

Berkowitz DM, Danai PA, Eaton S, Moss M, Martin G.
Accurate characterization of extravascular lung water in acute respiratory distress syndrome
Crit Care Med 2008; 36: 1803-9

Phillips C, Chesnutt M, Smith M.
Extravascular lung water in sepsis-associated acute respiratory distress syndrome: indexing with predicted body weight
improves correlation with severity of illness and survival

Isakow W, Schuster DP.
Extravascular lung water measurements and hemodynamic monitoring in the critically ill: bedside alternatives to the
pulmonary artery catheter
Am J Physiol Lung Cell Mol Physiol 2006; 291: 1118 - 33

Martin GS, Eaton S, Mealer M, Moss M.
Extravascular lung water in patients with severe sepsis: a prospective cohort study
Crit Care 2005; 9: R74-82

Mitchell JP, Schuller D, Calandrino FS, Schuster DP.
Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization
1.4 Guidelines and standard operating procedures

Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008
Intensive Care Med 2008; 34: 17-60

Goepfert M, Reuter D, Akyol D, Lamm P, Kilger E, Goetz A.
Goal directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients
Intensive Care Medicine 2007; 33: 96-103

2. Reviews

2.1 General

Malbrain M, De Potter P, Deeren D.
Cost Effectiveness of minimally invasive hemodynamic monitoring

Genahr A, McLuckie A.
Transpulmonary thermodilution in the critically ill
Brit J Int Care 2004: 6-10

Michard F, Perel A.
Management of circulatory and respiratory failure using less invasive hemodynamic monitoring

Cottis R, Magee N, Higgins DJ.
Haemodynamic monitoring with pulse-induced contour cardiac output (PiCCO) in critical care
Intensive Crit Care Nurs 2003; 19: 301-7

Bellomo R, Uchino S.
Cardiovascular monitoring tools: use and misuse
Curr Opin Crit Care 2003; 9(3): 225-9

2.2 Cardiac Output

Della Rocca G, Costa MG.
Volumetric monitoring: principles of application
Minerva Anestesiol 2005; 71:303-6

2.3 Preload

Della Rocca G, Costa MG.
Intrathoracic Blood Volume: Clinical Applications
2.4 Lung Water

Khan S, Trof RJ, Groeneveld ABJ.
Transpulmonary dilution-derived extravascular lung water as a measure of lung edema
Curr Opin Crit Care 2007; 13 (3):303-7

Fernandez-Mondejar E, Guerrero-López F, Colmenero M.
How important is the measurement of extravascular lung water?
Curr Opin Crit Care 2007; 13: 79-83

Michard F.
Bedside assessment of extravascular lung water by dilution methods: temptations and pitfalls

Isakow W, Schuster DP.
Extravascular lung water measurements and hemodynamic monitoring in the critically ill: bedside alternatives to the pulmonary artery catheter
Am J Physiol Lung Cell Mol Physiol 2006; 291: 1118-33

Kirov MY, Kuzkov VV, Bjertnaes LJ.
Extravascular lung water in sepsis

Groeneveld ABJ.
Value and limitations of measuring extravascular lung water
Int J Intensive Care 2007; Autumn: 84-6

2.5 Pediatric

Tibby SM, Murdoch IA.
Measurement of cardiac output and tissue perfusion
Curr Opin Pediatr 2002; 14(3):303-9

3. Guidelines and standard operating procedures

Goepfert M, Reuter D, Akyol D, Lamm P, Kilger E, Goetz A.
Goal directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients
Intensive Care Medicine 2007; 33: 96-103
Kortgen A, Niederprün P, Bauer M.
Implementation of an evidence-based „standard operating procedure“ and outcome in septic shock

Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock
Crit Care Med 2004; 32(3): 858-77

4a. PiCCO Parameters - Methodology

4a.1 Flow (Cardiac Output)

Segal E, Katzenelson R, Berkenstadt H, Perel A.
Transpulmonary thermodilution cardiac output measurement using the axillary artery in critically ill patients

Sakka SG, Meier-Hellmann A.
Evaluation of cardiac output and cardiac preload

Faybik P, Hetz H, Baker A, Yankovskaya E, Krenn CG, Steltzer H.
Iced versus room temperature injectate for assessment of cardiac output, intrathoracic blood volume, and extravascular lung water by single transpulmonary thermodilution
J Crit Care 2004; 19(2):103-7

4a.2 Preload (Global End Diastolic Volume)

Volumetric preload measurement by thermodilution: a comparison with transoesophageal echocardiography
Br J Anaesth 2005; 94(6):748-55

Buhre W, Buhre K, Kazmaier S, Sonntag H, Weyland A.
Assessment of cardiac preload by indicator dilution and transoesophageal echocardiography
Eur J Anaesthesiol 2001; 18(10):662-7

McLuckie A, Bihari D.
Investigating the relationship between intrathoracic blood volume index and cardiac index
Intensive Care Med 2000; 26(9):1376-8

4a.3 Contractility (Cardiac Function Index)

Michard F, Perel A.
Management of circulatory and respiratory failure using less invasive hemodynamic monitoring
Evaluation of the cardiac function index as a new bedside indicator of cardiac performance
Intensive Care Med 1994; 20(S2):21

4a.4 Volume Responsiveness (Stroke Volume Variation and Pulse Pressure Variation)

Reuter DA, Goepfert MS, Goresch T, Schmoeckel M, Kilger E, Goetz AE.
Assessing fluid responsiveness during open chest conditions
Br J Anaesth 2005; 94(3):318-23

Prediction of fluid responsiveness in patients during cardiac surgery
Br J Anaesth 2004; 93 (6):782-8

Reuter DA, Felbinger TW, Kilger E, Schmidt C, Lamm P, Goetz AE.
Optimizing fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left
ventricular stroke volume variations. Comparison with aortic systolic pressure variations
Br J Anaesth 2002; 88(1):124-6

4a.5 Pulmonary Edema (Extravascular Lung Water)

Berkowitz DM, Danai PA, Eaton S, Moss M, Martin G.
Accurate characterization of extravascular lung water in acute respiratory distress syndrome

Phillips C, Chesnutt M, Smith M.
Extravascular lung water in sepsis-associated acute respiratory distress syndrome: indexing with predicted body
weight improves correlation with severity of illness and survival

Isakow W, Schuster DP.
Extravascular lung water measurements and hemodynamic monitoring in the critically ill: bedside alternatives to the
pulmonary artery catheter

Kuzkov V, Kirov M, Sovershaev M, Kulkin V, Suberov E, Waerhaug K, Bjertnaes L.
Extravascular lung water determined with single transpulmonary thermodilution correlates with the severity of
sepsis-induced acute lung injury

Kirov MY, Kuzkov VV, Bjertnaes LJ.
Extravascular lung water in sepsis

Sakka SG, Klein M, Reinhart K, Meier-Hellmann A.
Prognostic value of extravascular lung water in critically ill patients
Chest 2002; 122(6):2080-6
4b. PiCCO Parameters - Validation

4b.1 Flow (Cardiac Output CO)

Felbinger TW, Reuter DA, Eltzschig HK, Bayerlein J, Goetz AE.
Cardiac index measurements during rapid preload changes: a comparison of pulmonary artery thermodilution with arterial pulse contour analysis

Marx G, Schuerholz T, Sumpelmann R, Simon T, Leuwer M.
Comparison of cardiac output measurements by arterial trans-cardiopulmonary and pulmonary arterial thermodilution with direct Fick in septic shock
Eur J Anaesthesiol 2005; 22(2):129-34

Comparison of esophageal Doppler, pulse contour analysis, and real-time pulmonary artery thermodilution for the continuous measurement of cardiac output

Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability
Crit Care Med 2002; 30(1):52-8

Sakka SG, Reinhart K, Wegscheider K, Meier-Hellmann A.
Is the placement of a pulmonary artery catheter still justified solely for the measurement of cardiac output?

4b.2 Preload (Global Enddiastolic Volume GEDV)

Kozieras, J, Thuemer O, Sakka SG.
Influence of an acute increase in systemic vascular resistance on transpulmonary thermodilution-derived parameters in critically ill patients
Intensive Care Med 2007; 33:1619-23

Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL.
Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock
Chest 2003; 124(5):1900-8

Reuter DA, Felbinger TW, Moerstedt K, Weis F, Schmidt C, Kilger E, Goetz AE.
Intrathoracic blood volume index measured by thermodilution for preload monitoring after cardiac surgery

Renner J, Gruenewald M, Brand P, Steinfath M, Scholz J, Lutter G, Bein B.
Global End-Diastolic Volume as a Variable of Fluid Responsiveness During Acute Changing Loading Conditions
J Cardiothorac Vasc Anesth 2007; 21(5): 650-4
4b.3 Contractility (Cardiac Function Index CFI)

Combes A, Berneau JB, Luyt CE, Trouillet JL.
Estimation of left ventricular systolic function by single transpulmonary thermodilution
Intensive Care Med 2004; 30(7):1377-83

4b.4 Volume Responsiveness (Stroke Volume Variation SVV and Pulse Pressure Variation PPV)

Kubitz JC, Annecke T, Forkl S, Kemming GI, Kronas N, Goetz AE, Reuter DA.
Validation of pulse contour derived stroke volume variation during modifications of cardiac afterload
Br J Anaesth 2007; 98(5): 591-7

Hofer CK, Muller SM, Furrer L, Klaghofer R, Genoni M, Zollinger A.
Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting
Chest 2005; 128(2):848-54

Reuter DA, Kirchner A, Felbinger TW, Weis FC, Kilger E, Lamm P, Goetz AE.
Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function
Crit Care Med 2003; 31(5):1399-404

Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure
Am J Respir Crit Care Med 2000; 162(1):134-8

4b.5 Pulmonary Edema (Extravascular Lung Water EVLW)

Monnet X, Anguel N, Osman D, Hamzaoui, Richard C, Teboul JL.
Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI / ARDS

Kuzkov VV, Suborov EV, Kirov MY, Kuklin VN, Sobhkhaz M, Johnsen S, Waerhaug K, Bjertnaes LJ.
Extravascular lung water after pneumonectomy and one-lung ventilation in sheep

Michard F, Schachtrupp A, Toens C.
Factors influencing the estimation of extravascular lung water by transpulmonary thermodilution in critically ill patients

Kirov MY, Kuzkov VV, Kuklin VN, Waerhaug K, Bjertnaes LJ.
Extravascular lung water assessed by transpulmonary single thermodilution and postmortem gravimetry in sheep
Crit Care 2004; 8(6):R451-8

Katzenelson R, Perel A, Berkenstadt H, Preisman S, Kogan S, Sternik L, Segal E.
Accuracy of transpulmonary thermodilution versus gravimetric measurement of extravascular lung water
Crit Care Med 2004; 32(7):1550-4
5. **Fields of application**

5.1 **Septic Shock**

Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge
Crit Care Med 2007; 35(1):64-9

Kortgen A, Niederprün P, Bauer M.
Implementation of an evidence-based „standard operating procedure“ and outcome in septic shock

Martin GS, Eaton S, Mealer M, Moss M.
Extravascular lung water in patients with severe sepsis: a prospective cohort study
Crit Care 2005; 9(2):R74-82

Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL.
Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock
Chest 2003; 124(5):1900-8

5.2 **Cardiogenic Shock**

The impact of Intra-aortic Balloon Pumping on Cardiac Output Determination by Pulmonary Arterial and Transpulmonary Thermodilution in Pigs
J of Cardiovasc and Vasc Anesth 2006; 20 (3):320-4

Bindels AJ, van der Hoeven JG, Graafland AD, de Koning J, Meinders AE.
Relationships between volume and pressure measurements and stroke volume in critically ill patients
5.3 Hypovolemic Shock

Nirmalan M, Niranjan M, Willard T, Edwards JD, Little RA, Dark PM.
Estimation of errors in determining intrathoracic blood volume using thermal dilution in pigs with acute lung injury and haemorrhage

Berkenstadt H, Friedman Z, Preisman S, Keidan I, Livingstone D, Perel A.
Pulse pressure and stroke volume variations during severe haemorrhage in ventilated dogs

Friedman Z, Berkenstadt H, Margalit N, Segal E, Perel A.
Cardiac output assessed by arterial thermodilution during exsanguination and fluid resuscitation: experimental validation against a reference technique

5.4 ALI / ARDS

Berkowitz DM, Danai PA, Eaton S, Moss M, Martin G.
Accurate characterization of extravascular lung water in acute respiratory distress syndrome

Phillips C, Chesnutt M, Smith M.
Extravascular lung water in sepsis-associated acute respiratory distress syndrome: indexing with predicted body weight improves correlation with severity of illness and survival
Crit Care Med, 2008: 36(1); 69-73

Monnet X, Anguel N, Osman D, Hamzaoui, Richard C, Teboul JL.
Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI / ARDS

Kuzkov V, Kirov M, Sovershaev M, Kuklin V, Suberov E, Waerhaug K, Bjertnaes L.
Extravascular lung water determined with single transpulmonary thermodilution correlates with the severity of sepsis-induced acute lung injury

Perkins GD, McAuley DF, Thickett DR, Gao F.
The beta-agonist lung injury trial (BALT): a randomized placebo-controlled clinical trial
Am J Respir Crit Care Med 2006; 173(3): 281-7

Martin GS, Eaton S, Mealer M, Moss M.
Extravascular lung water in patients with severe sepsis: a prospective cohort study
Crit Care 2005; 9(2):R74-82

Patroniti N, Bellani G, Maggioni E, Manfio A, Marcora B, Pesenti A.
Measurement of pulmonary edema in patients with acute respiratory distress syndrome
McAuley DF, Giles S, Fichter H, Perkins GD, Gao F.
What is the optimal duration of ventilation in the prone position in acute lung injury and acute respiratory distress syndrome?

5.5 Trauma

Berkenstadt H, Friedman Z, Preisman S, Keidan I, Livingstone D, Perel A.
Pulse pressure and stroke volume variations during severe haemorrhage in ventilated dogs

Friedman Z, Berkenstadt H, Margalit N, Segal E, Perel A.
Cardiac output assessed by arterial thermodilution during exsanguination and fluid resuscitation: experimental validation against a reference technique

5.6 Burns

Csontos C, Foldi V. et al.
Arterial thermodilution in burn patients suggests a more rapid fluid administration during early resuscitation.

Koppl J, Karovic D, Podhoransky B, Csomor D, Gasparec P, Sagat T, Trimmel H.
Hemodynamic monitoring using the PiCCO system in a 10 month old infant suffering from serious burn injury.

Reproducibility of transpulmonary thermodilution measurements in patients with burn shock and hypothermia

Effect of crystalloid resuscitation and inhalation injury on extravascular lung water: clinical implications
Chest 2002; 121(6):1956-62

Holm C, Melcer B, Horbrand F, Henckel von Donnersmarck G, Muhlbauer W.
Arterial thermodilution: an alternative to pulmonary artery catheter for cardiac output assessment in burn patients
Burns 2001; 27(2):161-6

Holm C, Melcer B, Horbrand F, Worl H, von Donnersmarck GH, Muhlbauer W.
Intrathoracic blood volume as an end point in resuscitation of the severely burned: an observational study of 24 patients
J Trauma 2000; 48(4):728-34

5.7 Cardiac Surgery

Goepfert M, Reuter D, Akyol D, Lamm P, Kilger E, Goetz A.
Goal directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients
Intensive Care Medicine 2007; 33: 96-103

5.8 Neurology / Neurosurgery

Segal E, Greenlee JD, Hata SJ, Perel A. Monitoring intravascular volumes to direct hypertensive, hypervolemic therapy in a patient with vasospasm J Neurosurg Anesthesiol 2004; 16(4):296-8

Buhre W, Weyland A, Buhre K, Kazmaier S, Mursch K, Schmidt M, Sydow M, Sonntag H.
Effects of the sitting position on the distribution of blood volume in patients undergoing neurosurgical procedures
Br J Anaesth 2000; 84(3):354-7

5.9 Transplantation

Venkateswaran RV, Patchell VB, Wilson IC, Mascaro JG, Thompson RD, Quinn DW, Stockley RA, Coote JH, Bonser RS.
Early donor management increases the retrieval rate of lungs for transplantation
Ann Thorac Surg 2008; 85; 278-86

Della Rocca G, Costa GM, Coccia C, Pompei L, Di Marco P, Pietropaoli P.
Preload index: pulmonary artery occlusion pressure versus intrathoracic blood volume monitoring during lung transplantation
Anesth Analg 2002; 95(4):835-43

Della Rocca G, Costa MG, Coccia C, Pompei L, Pietropaoli P.
Preload and haemodynamic assessment during liver transplantation: a comparison between the pulmonary artery catheter and transpulmonary indicator dilution techniques
Eur J Anaesthesiol 2002; 19(12):868-75

Della Rocca G, Costa MG, Pompei L, Coccia C, Pietropaoli P.
Continuous and intermittent cardiac output measurement: pulmonary artery catheter versus aortic transpulmonary technique
Br J Anaesth 2002; 88(3):350-6

Goedje O, Seebauer T, Peyerl M, Pfeiffer UJ, Reichart B.
Hemodynamic monitoring by double-indicator dilution technique in patients after orthotopic heart transplantation
Chest 2000; 118(3):775-81

Intrathoracic fluid volumes and pulmonary function during orthotopic liver transplantation
Transplantation 2000; 69(11):2394-400

5.10 Pulmonary Edema

Groeneveld AB, Verheij J, van den Berg FG, Wisselink W, Rauwerda JA.
Increased pulmonary capillary permeability and extravascular lung water after major vascular surgery: effect on radiography and ventilatory variables
Eur J Anaesthesiol 2006; 23(1):36-41

Michard F, Schachtrupp A, Toens C.
Factors influencing the estimation of extravascular lung water by transpulmonary thermodilution in critically ill patients

Patoniti N, Bellani G, Maggioni E, Manfio A, Marcora B, Pesenti A.
Measurement of pulmonary edema in patients with acute respiratory distress syndrome
LITERATURE

Boussat S, Jacques T, Levy B, Laurent E, Gache A, Capellier G, Neidhardt A.
Intravascular volume monitoring and extravascular lung water in septic patients with pulmonary edema

5.12 Surgical Intensive Care

Sato Y, Motoyama S, Maruyama M, Hayashi K, Nakae H, Tajimi K, Ogawa J.
Extravascular Lung Water Measured Using Single Transpulmonary Thermodilution Reflects Perioperative Pulmonary Edema Induced by Esophagectomy

Roch A, Michelet P, D’Journo B, Brousse D, Blayac D, Lambert D, Auffray JP.
Accuracy and limits of transpulmonary dilution methods in estimating extravascular lung water after pneumonectomy
Chest 2005; 128(2):927-33

Deja M, Hildebrandt B, Ahlers O, Riess H, Wust P, Gerlach H, Kerner T.
Goal-directed therapy of cardiac preload in induced whole-body hyperthermia
Chest 2005; 128(2):580-6

Michard F, Schachtrupp A, Toens C.
Factors influencing the estimation of extravascular lung water by transpulmonary thermodilution in critically ill patients

Hypovolemia after traditional preoperative care in patients undergoing colonic surgery is underrepresented in conventional hemodynamic monitoring
Int J Colorectal Dis 2005; 21(7): 693-7

Della Rocca G, Costa, MG, Coccia C, Pompei L, Pietropaoli P.
Preload and haemodynamic assessment during liver transplantation: a comparison between the pulmonary artery catheter and transpulmonary indicator dilution techniques
Eur J Anaesthesiol 2002; 19(12):868-75

5.13 Medical Intensive Care

Chung FT, Lin SM, Lin SY, Lin HC.
Impact of extravascular lung water index on outcomes of severe sepsis patients in a medical intensive care unit
Respir Med 2008; 102(7): 956-61

Kortgen A, Niederprün P, Bauer M.
Implementation of an evidence-based „standard operating procedure“ and outcome in septic shock

Martin GS, Eaton S, Mealer M, Moss M.
Extravascular lung water in patients with severe sepsis: a prospective cohort study
Crit Care 2005; 9(2):R74-82

5.14 Pediatrics

With Editorial
Tibby S.
Transpulmonary thermodilution: Finally, a gold standard for pediatric cardiac output measurement*

Koppl J, Karovic D, Podhoransky B, Csomor D, Gasparec P, Sagat T, Trimmel H.

Fakler U, Pauli Ch, Balling G, Lorenz HP, Eicken A, Hennig M, Hess J.
Cardiac index monitoring by pulse contour analysis and thermodilution after pediatric cardiac surgery J of Thorac Cardiovasc Surg 2007; 133(1):224–8

Estimation of the parameters of cardiac function and of blood volume by arterial thermodilution in an infant animal model
Pediatric Anesthesia 2006; 16: 635-40

Lopez-Herce J, Ruperez M, Sanchez C, Garcia C, Garcia E.
Hemodynamic response to acute hypovolaemia, rapid blood volume expansion and adrenaline administration in an infant animal model
Resuscitation 2006; 68: 259-65

Egan J, Festa M, Cole A, Nunn GR, Gillis J, Winlaw DS.
Clinical assessment of cardiac performance in infants and children following cardiac surgery

Pulse contour cardiac output system use in pediatric orthotopic liver transplantation: preliminary report of nine patients
Transplant Proc 2005; 37(7):3168-70

Ruperez M, Lopez-Herce J, Garcia C, Sanchez C, Garcia E, Vigil D.
Comparison between cardiac output measured by the pulmonary arterial thermodilution technique and that measured by the femoral arterial thermodilution technique in a pediatric animal model
Pediatr Cardiol 2004; 25(2):119-23

6. PiCCO parameters in various clinical situations

Luecke T, Roth H, Herrmann P, Joachim A, Weisser G, Pelosi P, Quintel M.
PEEP decreases atelectasis and extravascular lung water but not lung tissue volume in surfactant-washout lung injury
Intensive Care Med 2003; 29(11):2026-33

Reuter DA, Felbinger TW, Schmidt C, Moerstedt K, Kilger E, Lamm P, Goetz AE.
Trendelenburg positioning after cardiac surgery: effects on intrathoracic blood volume index and cardiac performance

Hofer CK, Zalunardo MP, Klaghofer R, Spahr T, Pasch T, Zollinger A.
Changes in intrathoracic blood volume associated with pneumoperitoneum and positioning
Acta Anaesthesiol Scand 2002; 46(3):303-8

Kampen J, Liess K, Casadio C, Tonner PH, Scholz J.
Thermal lesions caused by a PiCCO catheter left in place in the MRT
Intensivmedizin und Notfallmedizin 2002; 39(1):113

Buhre W, Weyland A, Buhre K, Kazmaier S, Mursch K, Schmidt M, Sydow M, Sonntag H.
Effects of the sitting position on the distribution of blood volume in patients undergoing neurosurgical procedures
Br J Anaesth 2000; 84(3):354-7

7. Catheters

Can femoral artery pressure monitoring be used routinely in cardiac surgery?

Effect of the venous catheter site on transpulmonary thermodilution measurement variables
Crit Care Med 2007; 35(3):783-6

Traore O, Liotier J, Souweine B.
Prospective study of arterial and central venous catheter colonization and of arterial- and central venous catheter-related bacteremia in intensive care units

Cousins TS, O’Connell JM.
Arterial Cannulation: A Critical Review
AANA Journal 2004; 72 (4): 267-71

Orme RM, Pigott DW, Mihm FG.
Measurement of cardiac output by transpulmonary arterial thermodilution using a long radial artery catheter. A comparison with intermittent pulmonary artery thermodilution
Anaesthesia 2004; 59: 590-4

Segal E, Katzenelson R, Berkenstadt H, Perel A.
Transpulmonary thermodilution cardiac output measurement using the axillary artery in critically ill patients

Scbeer B, Perel A, Pfeiffer UJ.
Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine
Crit Care 2002; 6(3):199-204
Questionnaire & competencies
1. What is the rationale for using the PiCCO® Technology?

2. What does PiCCO® stand for?

3. Can you name the most important specific parameters that using PiCCO® will give?

4. Describe these parameters in terms of what they mean to patient care?

5. What does SVV represent and therefore what patients is it limited to?

6. What arterial sites can be used when placing the PiCCO® catheter?

7. What 2 principles does the PiCCO® use to obtain its values?

8. What fluid do you use when calibrating the system?

9. How much cold bolus should be given, and what influences this volume?

10. How many boluses should be used to calibrate and how often is it necessary to calibrate the PiCCO®?

11. What temperature should the thermodilution bolus be?

1. What is the rationale for using the PiCCO® Technology?
 Hemodynamic monitoring of the patient

2. What does PiCCO® stand for?
 Pulse Contour Cardiac Output (i to facilitate the pronunciation)

3. Can you name the six most important specific parameters that using PiCCO® will give?
 - Cardiac Output (CO)
 - Volumetric Preload (GEDV)
 - Lung water (EVLW)
 - Afterload (SVRI)
 - Contractility (CFI)
 - Volume responsiveness (SVV/PPV)

4. Describe these parameters in terms of what they mean to patient care?
 - CO - flow created by the heart
 - Volumetric preload – because it is a volume you can use it to guide fluid management
 - Afterload – for use of vasoactive drugs
 - Contractility – heart function, for use of inotropic drugs
 - Lung water – indicates presence of pulmonary edema, therefore you can use to titrate filling. Can indicate early sepsis i.e. leaky capillaries

5. What does SVV represent and therefore what patients is it limited to?
 Stroke Volume Variation – shows if the patient is volume responsive or not, means if fluid administration will result in an increase of CO. Limited to patients with no arrhythmias and those who are fully ventilated.
6. What sites can be used when placing the PiCCO® arterial catheter?
 - Femoral
 - Brachial
 - Axillary

7. What 2 principles does the PiCCO® use to obtain its values?
 - Transpulmonary Thermodilution and Arterial Pulse Contour Analysis

8. What fluid do you use when calibrating the system?
 - Saline usually
 - Can use dextrose also if Na high

9. How much cold bolus should be given, and what influences this volume?
 - The weight of the patient influences the amount of the bolus which should be given.
 - The monitor displays the recommended amount in the thermodilution screen

10. How many boluses should be used to calibrate and how often is it necessary to calibrate the PiCCO®?
 - 3; should be calibrated every 8 hours or if there is a major change in hemodynamics or in the patients clinical condition (e.g. volume loading, change of ventilation mode, application of vasoactive and/or inotropic drugs)

11. What temperature should the thermodilution bolus be?
 - At most room temperature. To ensure optimal thermodilution signals a temperature of 8 °C (64.4°F) maximum is recommended
Competencies

Assessment of competencies
PULSION PiCCO-Technology monitoring – Clinical Education

This competency will assess the following areas:
• Knowledge of the PiCCO® system and set-up
• Management of the PiCCO® monitoring system in situ

Note: Profound knowledge of arterial and CVC line management is required prior to attempting this competency.

<table>
<thead>
<tr>
<th>Part A</th>
<th>Assessment Criteria</th>
<th>Competent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Discuss the rationale for PiCCO® monitoring</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Discuss appropriate sites for PiCCO® A-Line insertion</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>List the equipment required</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Discuss complications associated with PiCCO® monitoring</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Specify essential nursing observations and actions involved in caring for a patient with a PiCCO® monitor</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Discuss the parameters monitored, normal ranges and treatment protocols</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Discuss the calibration process, recommended fluids and temperatures for thermodilution</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Discuss unit policy regarding frequency of line replacement, change of flush systems and decontamination process</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part B</th>
<th>Assessment Criteria</th>
<th>Competent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prepares flushing device and transducer as for A-line competency</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Demonstrates ability to comply with unit infection control and disposal of sharps policies</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Demonstrates process, ensuring all connections are color coded and secure</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Demonstrates accessing input menu, completes data input</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Follows unit and manufacturer’s guidelines for calibration</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>States how often the system should be calibrated / zeroed.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Demonstrates familiarity with specified chart</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Demonstrates safe removal of components and follows decontamination procedures</td>
<td></td>
</tr>
</tbody>
</table>

I confirm that _____________________ has achieved the required competence for PiCCO® monitoring.

Signature of assessor:
Name: Position: Date:

I acknowledge my responsibility to meet the standards within the Code of Professional Conduct: standards for Conduct, Performance and ethics (NMC 2004)

Signature of Participant:
Name: Position: Date
Part A Assessment Criteria

1. Discuss the rationale for PiCCO® monitoring
 - In-depth assessment of cardiovascular function
 - Volumetric/hemodynamic management

2. Appropriate sites for PiCCO® A-line
 - Axillary
 - Brachial
 - Femoral

3. List the equipment required for PiCCO® monitoring
 - Sterile dressing pack, local anaesthetic, needles, syringes, cleansing agent, suture, bio-occlusive dressing (all as per unit policy)
 - Existing CVC, 3-way tap
 - Pressure cuff
 - Saline 0.9% (500-1000 ml bag)
 - PULSION® disposable pressure transducer pack (includes injectate temperature sensor housing device)
 - Appropriate arterial thermodilution catheter set (see guide for details)
 - PULSION® PiCCO® monitor with injectate temperature sensor cable, thermistor cable, transducer cable for pressure signal, and slave cable to bedside monitor.

4. Discuss complications associated with PiCCO® monitoring
 - As per Art Line & Central Venous Pressure competencies
 - Inaccurate calibration, leading to potential misinterpretation of results

5. Specify essential nursing observations and actions to care for a patient with PiCCO® monitoring
 - As per Art Line and Central Venous Pressure competencies
 - Ensure accurate input of essential data
 - Ensure accurate calibration of system

6. Discuss basics of monitored parameters—refer to guide
 - Cardiac Output (index)
 - Cardiac Preload - Global End Diastolic Volume (index)
 - Afterload - Systemic Vascular Resistance (index)
 - Cardiac Contractility - Cardiac Function Index
 - Pulmonary Edema - Extravascular Lung Water (index)

 Discuss Decision tree—guidelines for management

7. Discuss calibration process
 - Calibrate the PiCCO® system once per shift.
 - Maximum interval between calibrations—8 hours and/or when massive changes of hemodynamics
 - Type of fluid used for injectate—0.9% saline, 5% Glucose
 - Recommended temperature of fluid <8°C (64.4°F) cold bolus (saline in fridge then on ice)

8. Discuss frequency of line replacement
 - Manufacturer’s recommendation—10 days
 - Unit Policy for line replacement, flushing device renewal
See instructions for use and package insert for full prescribing information. Technical specifications are subject to change without further notice. © 2009 PULSION Medical Systems all rights reserved.